Academic lesson plan for summer semester - 2024 Name of the teaching faculty: **UMESH CHANDRA SETHI** Semester: 4th No. of periods per week: 5 semester Exam: 80 Total Marks: 100 Discipline / Dept.: **EE**Subject (Theory): **EM&I**Total Periods: **75**Class Test: **20** | Week | Period | Unit/chapter | Topic to be covered | |-----------------|-------------------|--|---| | | 1 st | MEASURING INSTRUMENTS | Define Accuracy, precision, Errors, Resolutions Sensitivity | | 1 ST | 2 nd | MEASURING INSTRUMENTS | Classification of measuring instruments. | | | 3 rd | MEASURING INSTRUMENTS | Explain Deflecting, controlling and damping | | | 3 | | arrangements in indicating type of | | | 4 th | MEASURING INSTRUMENTS | Calibration of instruments | | | 5 th | TUTORIAL CUM DOUBT CLEAR CLASS | | | | | ANALOG AMMETERS AND | Describe Construction, principle of operation, errors, | | | 1 st | VOLTMETERS | ranges merits and demerits of Moving iron type | | | | | instrument | | | 2 nd | ANALOG AMMETERS AND | Permanent Magnet Moving coil type instruments | | aND | | VOLTMETERS | | | 2^{ND} | 3^{rd} | ANALOG AMMETERS AND | Dynamometer type instruments | | | 3 | VOLTMETERS | | | | 4 th | ANALOG AMMETERS AND | Rectifier type instruments | | | | VOLTMETERS | | | | 5 th | TUTORIAL CUM DOUBT CLEAR CLASS | Dout clear class & Objective type question | | | _ | ANALOG AMMETERS AND | Induction type instruments | | | 1 st | VOLTMETERS | 7,6 | | | 2 nd | ANALOG AMMETERS AND | Extend the range of instruments by use of shunts and | | | 2 | VOLTMETERS | Multipliers | | 3 RD | Ord | ANALOG AMMETERS AND | Solve Numerical | | 3 | $3^{\rm rd}$ | VOLTMETERS | | | | | ANALOG AMMETERS AND | | | | 4 th | VOLTMETERS | | | | | | | | | 5 th | TUTORIAL CUM DOUBT CLEAR CLASS | | | | 1 st | WATTMETERS AND MEASUREMENT | Describe Construction, principle of working of | | | | OF POWER | Dynamometer type wattmeter. (LPF and UPF type) | | | 2 nd | WATTMETERS AND MEASUREMENT | Describe Construction, principle of working of | | | <u></u> | OF POWER | Dynamometer type wattmeter. (LPF and UPF type) | | 4 TH | 3^{rd} | | The Errors in Dynamometer type wattmeter and | | | - | OF POWER | methods of their correction. | | | 4 th | WATTMETERS AND MEASUREMENT | | | | -th | OF POWER | | | | 5 th | TUTORIAL CUM DOUBT CLEAR CLASS | | | | 1 st | WATTMETERS AND MEASUREMENT | Induction type watt meters. | | | | OF POWER | lutur du stien of an annumenton | | | 2 nd | ENERGYMETERS AND MEASUREMENT OF ENERGY | Introduction of energy meter | | | | IVIEASOREIVIENT OF ENERGY | | | 5 TH | 3 rd | ENERGYMETERS AND | Single Phase Induction type Energy meters – | | | | MEASUREMENT OF ENERGY | construction, working principle and their | | | 4 th | ENERGYMETERS AND | compensation & adjustments & Testing of Energy | | | | MEASUREMENT OF ENERGY | Meters | | | | | | | | 5 th | TUTORIAL CUM DOUBT CLEAR CLASS | | | | 1 st | MEASUREMENT OF SPEED, | Tachometers, types and working principle | | 6 TH | | FREQUENCY AND POWER FACTOR | | | | 2 nd | | Principle of operation and construction of Mechanical and | | | | MEASUREMENT OF SPEED, | Electrical resonance Type frequency meters. | |--------------------|-----------------|--|--| | | 3 rd | FREQUENCY AND POWER FACTOR | 2200 modern 1000 million 1 per moderno y motoris. | | | 4 th | | Principle of operation and working of Dynamometer type single phase and three phase power factor | | | 4 | | meters. | | | 5 th | TUTORIAL CUM DOUBT CLEAR CLASS | Objective Questions related to frequency | | 7 TH | 1 st | MEASUREMENT OF RESISTANCE, INDUCTANCE& CAPACITANCE | Measurement of high resistance by loss of charge method | | | 2 nd | MEASUREMENT OF RESISTANCE, INDUCTANCE& CAPACITANCE | Construction, principle of operations of Megger & Earth tester for insulation resistance and earth | | | 3 rd | MEASUREMENT OF RESISTANCE, INDUCTANCE& CAPACITANCE | resistance measurement respectively | | | 4 th | MEASUREMENT OF RESISTANCE, INDUCTANCE& CAPACITANCE | Construction and principles of Multimeter. (Analog an Digital) | | | 5 th | TUTORIAL CUM DOUBT CLEAR CLASS | Objective Questions related to equipment | | | 1 st | MEASUREMENT OF RESISTANCE, | Measurement of inductance by Maxewell's Bridge | | | 2 nd | INDUCTANCE& CAPACITANCE | method. | | 8^{TH} | 3 rd | | Measurement of capacitance by Schering Bridge | | | 4 th | | method | | | 5 th | TUTORIAL CUM DOUBT CLEAR CLASS | Objective Questions related to resistance measurement | | | 1 st | SENSORS AND TRANSDUCER | Define Transducer, sensing element or detector | | | 2 nd | SENSORS AND TRANSDUCER | element and transduction elements. | | 9 TH | 3 rd | SENSORS AND TRANSDUCER | Classify transducer. Give examples of various class of transducer | | | 4 th | SENSORS AND TRANSDUCER | | | | 5 th | TUTORIAL CUM DOUBT CLEAR CLASS | Objective Questions related to sensors | | | 1 st | SENSORS AND TRANSDUCER | Resistive transducer | | | 2 nd | SENSORS AND TRANSDUCER | Linear and angular motion potentiometer | | 10^{TH} | 3 rd | SENSORS AND TRANSDUCER | Thermistor and Resistance thermometers | | | 4 th | SENSORS AND TRANSDUCER | | | | 5 th | TUTORIAL CUM DOUBT CLEAR CLASS | Objective Questions related to Basic instrument | | | 1 st | SENSORS AND TRANSDUCER | Wire Resistance Strain Gauges | | | 2 nd | SENSORS AND TRANSDUCER | | | 11^{TH} | 3 rd | SENSORS AND TRANSDUCER | . Inductive Transducer & Principle of linear variable | | | 4 th | SENSORS AND TRANSDUCER | differential Transformer (LVDT) | | | 5 th | TUTORIAL CUM DOUBT CLEAR CLASS | Objective Questions related to Basic instrument | | | 1 st | SENSORS AND TRANSDUCER | Uses of LVDT. | | | 2 nd | SENSORS AND TRANSDUCER | | | 12 TH | 3 rd | SENSORS AND TRANSDUCER | Capacitive Transducer.& General principle of capacitiv
transducer | | | 4 th | SENSORS AND TRANSDUCER | Variable area capacitive transducer | | | 5 th | TUTORIAL CUM DOUBT CLEAR CLASS | Objective Questions related to Basic instrument | | | 1 st | SENSORS AND TRANSDUCER | . Change in distance between plate capacitive | | 13 TH | 2 nd | SENSORS AND TRANSDUCER | | | | 3 rd | SENSORS AND TRANSDUCER | Piezo electric Transducer and Hall Effect Transducer | | | 4 th | SENSORS AND TRANSDUCER | with their applications | | | 5 th | TUTORIAL CUM DOUBT CLEAR CLASS OSCILLOSCOPE | Objective Questions related to Basic instrument | | | 1 st | | Principle of operation of Cathode Ray Tube | | 1 ATH | 2 nd | OSCILLOSCOPE | | | 14 TH | 3 rd | OSCILLOSCOPE | . Principle of operation of Oscilloscope (with help of block diagram. | | | 4 th | OSCILLOSCOPE | | | | | | | | 15 TH | 1 st | OSCILLOSCOPE | Measurement of DC Voltage & current | |------------------|-----------------|--------------------------------|---| | | 2 nd | OSCILLOSCOPE | | | | 3 rd | OSCILLOSCOPE | Measurement of AC Voltage, current, phase & | | | 4 th | OSCILLOSCOPE | frequency | | | 5 th | TUTORIAL CUM DOUBT CLEAR CLASS | Objective Questions related to instrument | The lesson plan prepared by the concerned faculty. UMESH CHANDRA SETHI Guest Faculty Elect. Engg. Deptt.