Academic lesson plan for summer semester - 2024

Name of the Teaching faculty: KISHORE CHANDRA PRUSTY Semester: $\mathbf{6}^{\mathrm{th}}$

No. of periods per week: 5 semester Exam: 80

Total Marks: 100

Discipline / Dept.: **EE** Subject (Theory): CSE
Total Periods: 75 Class Test:20

Week	Period	UNIT/CHAPTER	Topic to be covered
1 ST	1 st	FUNDAMENTAL OF CONTROL	Introduction to CS. Classification of Control system
	2 nd	FUNDAMENTAL OF CONTROL	Open loop & Closed loop system and its comparison
	3 rd	FUNDAMENTAL OF CONTROL	Effects of Feed back
	4 th	FUNDAMENTAL OF CONTROL	Standard test Signals. Servomechanism
	5 th	TUTORIAL CUM DOUBT CLEAR	Discussion about different test signals.
	1 st	MATHEMATICAL MODEL OF A	Transfer Function & Impulse response
	2 nd	MATHEMATICAL MODEL OF A	Properties, Advantages & Disadvantages of T.F
2^{ND}	3 rd	MATHEMATICAL MODEL OF A	Poles & Zeroes of T.F. Problems Dis TF of network.
	4 th	MATHEMATICAL MODEL OF A	Mathematical modeling of Electrical Systems.
	5 th	TUTORIAL CUM DOUBT CLEAR	Discussion of formulas of Laplace Transform.
	1 st	CONTROL SYSTEM COMPONENTS	Components of Control System
	2 nd	CONTROL SYSTEM COMPONENTS	Gyroscope, Synchros,
3^{RD}	3 rd	CONTROL SYSTEM COMPONENTS	Tachometer, DC servomotors
	4 th	CONTROL SYSTEM COMPONENTS	Ac Servomotors
	5 th	TUTORIAL CUM DOUBT CLEAR	Simple Problem Discussion on Laplace Transform
	1 st	BLOCK DIAGRAM ALGEBRA	Basic Elements of Block Diagram
	2 nd	BLOCK DIAGRAM ALGEBRA	Canonical Form of Closed loop Systems
4^{TH}	3 rd	BLOCK DIAGRAM ALGEBRA	Rules for Block diagram reduction
	4 th	BLOCK DIAGRAM ALGEBRA	Procedure for Reduction of Block Diagram
	5 th	TUTORIAL CUM DOUBT CLEAR	Examples problems of Block Diagram reduction
	1 st	BLOCK DIAGRAM ALGEBRA	Problem for equivalent transfer function
-777.7	2 nd	SIGNAL FLOW GRAPHS	Signal Flow Graph & properties
5 TH	3 rd	SIGNAL FLOW GRAPHS	Construction of SFG from Block diagram
	4 th	SIGNAL FLOW GRAPHS	Mason's Gain formula. problems on Signal flow graph
	5 th	TUTORIAL CUM DOUBT CLEAR	Examples problems of Signal Flow Graph
	1 st	TIME RESPONSE ANALYSIS	Time response of control system
-TII	2 nd	TIME RESPONSE ANALYSIS	Standard Test signal
6^{TH}	3 rd	TIME RESPONSE ANALYSIS	Time Response of 1 st order system with Unit step res.
	4 th	TIME RESPONSE ANALYSIS	Time Response of 1 st order system with Unit impulse res
	5 th	TUTORIAL CUM DOUBT CLEAR	Simple Problem Discussion on Time Response Analysis
	1 st	TIME RESPONSE ANALYSIS	Time response of 2 nd order system to the unit step input
7 TH	2 nd	TIME RESPONSE ANALYSIS	Time response of 2 nd order system to the unit step input
/111	3 rd	TIME RESPONSE ANALYSIS	Types of errors in control system
	4 th	TIME RESPONSE ANALYSIS	Types of errors in control system
	5 th	TUTORIAL CUM DOUBT CLEAR	Simple Problem Discussion on Time Response Analysis.
	1 st	TIME RESPONSE ANALYSIS	Effect of adding poles and zero to transfer function
OTH	2 nd	TIME RESPONSE ANALYSIS	Response with P, PI, PD and PID controller
8^{TH}	3 rd	ROOT LOCUS TECHNIQUE	Root locus concept
	4 th	ROOT LOCUS TECHNIQUE	Routh hurwitz criterion
	5 th	TUTORIAL CUM DOUBT CLEAR	Examples problems of Routh hurwitz criterion
	1 st	ROOT LOCUS TECHNIQUE	Construction of root loci
9^{TH}	2 nd	ROOT LOCUS TECHNIQUE	Rules for construction of the root locus with example
9	3 rd	ROOT LOCUS TECHNIQUE	Rules for construction of the root locus with example
	4 th	ROOT LOCUS TECHNIQUE	Effect of adding poles and zeros to G(s) and H(s)
	5 th	TUTORIAL CUM DOUBT CLEAR	Objective questions on basics of Control System
	1 st	ROOT LOCUS TECHNIQUE	Examples problems of Root locus Diagram
10 TH	2 nd 3 rd	ROOT LOCUS TECHNIQUE	Examples problems of Root locus Diagram
10	3 rd	ROOT LOCUS TECHNIQUE	Examples problems of Root locus Diagram
	4"	ROOT LOCUS TECHNIQUE	Examples problems of Root locus Diagram

1			01' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '
	5 th	TUTORIAL CUM DOUBT CLEAR	Objective questions on basics of Control System
11 TH	1 st	FREQUENCY RESPONSE OF SYSTEM	Correlation between time & frequency response
	2 nd	FREQUENCY RESPONSE OF SYSTEM	Polar plots
	3 rd	FREQUENCY RESPONSE OF SYSTEM	Bode plots.
	4 th	FREQUENCY RESPONSE OF SYSTEM	All pass and minimum phase system
	5 th	TUTORIAL CUM DOUBT CLEAR	Objective questions on basics of Control System
12 TH	1 st	FREQUENCY RESPONSE OF SYSTEM	Computation of Gain margin and phase margin
	2 nd	FREQUENCY RESPONSE OF SYSTEM	Log magnitude versus phase plot.
	3 rd	FREQUENCY RESPONSE OF SYSTEM	Closed loop frequency response
	4 th	FREQUENCY RESPONSE OF SYSTEM	Examples problems of Bode Plot
	5 th	TUTORIAL CUM DOUBT CLEAR	Objective questions on basics of Control System
	1 st	FREQUENCY RESPONSE OF SYSTEM	Examples problems of Bode Plot
13 th	2 nd	FREQUENCY RESPONSE OF SYSTEM	Examples problems of Bode Plot
13	3 rd	NYQUIST PLOT	Principle of argument
	4 th	NYQUIST PLOT	Niquist stability criterion
	5 th	TUTORIAL CUM DOUBT CLEAR	Objective questions on basics of Control System
	1 st	NYQUIST PLOT	Niquist stability criterion applied to inverse polar plot
14 th	2 nd	NYQUIST PLOT	addition of poles and zeros to G(S) H(S)
14*	3 rd	NYQUIST PLOT	Effect on the shape of Nyquist plot by pole zero addition
	4 th	NYQUIST PLOT	Assessment of relative stability
	5 th	TUTORIAL CUM DOUBT CLEAR	Doubts of Control System.
	1 st	NYQUIST PLOT	Constant M and N circle
	2 nd	NYQUIST PLOT	Nicholas chart.
15 th	3 rd	NYQUIST PLOT	Examples problems of Nyquist Plot
	4 th	NYQUIST PLOT	Examples problems of Nyquist Plot
	5 th	TUTORIAL CUM DOUBT CLEAR	Doubts of Control System.

The lesson plan prepared by the concerned faculty.

KISHORE CHANDRA PRUSTY GF, ELECTRICAL DEPARTMENT