<u>LESSON PLAN – 2022 -2023</u>

DISCIPLINE: ETC	SEMESTER : 3RD	NAME OF THE TEACHING FACULTY:	
		ANURAG SETHY	
SUBJECT:	NO.OF DAYS/PER WEEK	SEMESTER FROM DATE: 15/09/2022 TO DATE: 22/12/2022	
CIRCUIT THEORY	CLASS ALLOTTED : 4	NO.OF WEEKS:15	
WEEK	CLASS DAY	THEORY	
1ST	1ST	CIRCUIT ELEMENTS (RESISTANCE, INDUCTANCE, CAPACITANCE), SCOPE OF NETWORK ANALYSIS & SYNTHESIZE	
	2ND	VOLTAGE DIVISION & CURRENT DIVISION, ENERGY SOURCES	
	3RD	ELECTRIC CHARGE, ELECTRIC CURRENT, ELECTRICAL ENERGY, ELECTRICAL POTENTIAL,.	
	4TH	R-L-C PARAMETERS, ACTIVE& PASSIVE ELEMENTS	
2ND	1ST	ENERGY SOURCES, CURRENT AND VOLTAGE SOURCES AND THEIR TRANSFORMATION & MUTUAL INDUCTANCE	
	2ND	STAR – DELTA TRANSFORMATION	
	3RD	NODAL ANALYSIS OF ELECTRICAL CIRCUITS WITH SIMPLE PROBLEM	
	4TH	MESH ANALYSIS OF ELECTRICAL CIRCUITS WITH SIMPLE PROBLEM	
3RD	1ST	THEVENIN'S THEOREM	
	2ND	THEVENIN'S THEOREM PROBLEMS	
	3RD	NORTON'S THEOREM	
	4TH	NORTON'S THEOREM PROBLEMS	
4TH	1ST	MAXIMUM POWER TRANSFER THEOREM	
	2ND	MAXIMUM POWER TRANSFER THEOREM PROBLEMS	
	3RD	SUPERPOSITION THEOREM	
	4ТН	SUPERPOSITION THEOREM PROBLEMS	
5TH	1ST	MILMANS THEOREM	
	2ND	RECIPROCITY THEOREM	
	3RD	DEFINITION OF FREQUENCY, CYCLE, TIME PERIOD, AMPLITUDE, AVERAGE VALUE, RMS VALUE	
	4TH	INSTANTANEOUS POWER & FORM FACTOR, APPARENT POWER, REACTIVE POWER, POWER TRIANGLE OF AC WAVE.	
6тн	1ST	INSTANTANEOUS POWER & FORM FACTOR, APPARENT POWER, REACTIVE POWER, POWER TRIANGLE OF AC WAVE.	
	2ND	PHASOR REPRESENTATION OF ALTERNATING QUANTITIES	
	3RD	SINGLE PHASE AC CIRCUITS-BEHAVIORS OF A.C. THROUGH PURE RESISTOR, INDUCTOR & CAPACITOR.	
	4TH	SINGLE PHASE AC CIRCUITS-BEHAVIORS OF A.C. THROUGH PURE RESISTOR, INDUCTOR & CAPACITOR.	
7TH	1ST	DC TRANSIENTS-BEHAVIORS OF R-L, R-C, R-L-C SERIES CIRCUIT & DRAW THE PHASOR DIAGRAM AND VOLTAGE TRIANGLE	
	2ND	DC TRANSIENTS-BEHAVIORS OF R-L, R-C, R-L-C SERIES CIRCUIT & DRAW THE PHASOR DIAGRAM AND VOLTAGE TRIANGLE	
	3RD	TIME CONSTANT OF R-L,R-C,R-L-C CIRCUITS	
	4TH	NUMERICAL PROBLEMS	
8TH	1ST	NUMERICAL PROBLEMS	
	2ND	NUMERICAL PROBLEMS	
	3RD	INTRODUCTION TO RESONANCE CIRCUITS	
	4ТН	RESONANT TUNED CIRCUITS	

<u>LESSON PLAN – 2022 -2023</u>

9TH	1ST	SERIES& PARALLEL RESONANCE
	2ND	EXPRESSION FOR SERIES RESONANCE, CONDITION FOR RESONANCE, FREQUENCY OF RESONANCE
	3RD	IMPEDANCE, CURRENT, VOLTAGE, POWER, Q FACTOR AND POWER FACTOR OF RESONANCE BANDWIDTH INTERMS OF Q
	4 TH	IMPEDANCE, CURRENT, VOLTAGE, POWER, Q FACTOR AND POWER FACTOR OF RESONANCE BANDWIDTH INTERMS OF Q
10TH	1ST	PARALLEL RESONANCE (RL, RC& RLC)& DERIVE THE EXPRESSION
	2ND	COMPARISONS OF SERIES & PARALLEL RESONANCE& APPLICATIONS
	3RD	PROBLEMS ON RESONANCE CIRCUITS
	4TH	PROBLEMS ON RESONANCE CIRCUIT
11TH	1ST	LAPLACE TRANSFORMATION
	2ND	LAPLACE TRANSFORMATION
	3RD	LAPLACE TRANSFORMATION
	4TH	ANALYSIS AND DERIVATION THE EQUATIONS FOR
		CIRCUIT PARAMETERS OF STEP RESPONSE OF R-L CIRCUIT
12TH	1ST	ANALYSIS AND DERIVATION THE EQUATIONS FOR
		CIRCUIT PARAMETERS OF STEP RESPONSE OF R-C CIRCUIT
	2ND	ANALYSIS AND DERIVATION OF THE EQUATIONS FOR CIRCUIT PARAMETERS OF STEP RESPONSE OF R-L-C CIRCUIT
	3RD	ANALYSIS AND DERIVATION OF THE EQUATIONS FOR CIRCUIT PARAMETERS OF IMPULSE RESPONSE OF R-L, RC CIRCUIT
	4TH	ANALYSIS AND DERIVE THE EQUATIONS FOR CIRCUIT PARAMETERS OF IMPULSE RESPONSE OF R-L, RC, R-L-C
13TH	1ST	NETWORK ELEMENTS, PORTS IN NETWORK (ONE PORT, TWO PORT),
	2ND	T AND PIE NETWORK
	3RD	Z-PARAMETERS AND Y-PARAMETERS
	4TH	H-PARAMETER
14TH	1ST	PROBLEMS ON TWO PORT NETWORK
	2ND	IDEAL &PRACTICAL FILTERS
	3RD	CUT OFF FREQUENCY, PASSBAND AND STOP BAND OF FILTERS
	4TH	- LOW PASS, HIGH PASS FILTERS AND THEIR CHARACTERISTICS
15TH	1ST	BAND PASS, BAND STOP FILTERS & THEIR CHARACTERISTICS
	2ND	BUTTERWORTH FILTER DESIGN
	3RD	ATTENUATION AND GAIN, BEL , DECIBEL & NEPER AND THEIR RELATIONS.
	4TH	ATTENUATORS& ITS APPLICATIONS. CLASSIFICATION-T- TYPE & PI – TYPE ATTENUATORS