UTKAL GOURAV MADHUSUDAN INSTITUTE OF TECHNOLOGY, RAYAGADA Academic Lesson plan for winter session (2022-2023)

Name of the teaching faculty: Barsarani Misra Semester:5TH No. of periods per week: 5 semester Exam: 80 Total Marks: 100

Discipline / Dept.: EE Subject (Theory): DE&MP Total Periods: 80 Class Test:20

Week	Period	Unit/chapter	Topic to be covered	Remark
	1 st	BASICS OF DIGITAL	Binary, Octal, Hexadecimal number systems and	
	1	ELECTRONICS	compare with Decimal system	
		BASICS OF DIGITAL	-DO-	
	2^{nd}	ELECTRONICS		
		BASICS OF DIGITAL	Binary addition, subtraction, Multiplication and Division	
1^{ST}	3 rd	ELECTRONICS		
	4 th	BASICS OF DIGITAL	1's complement and 2's complement numbers for a	
		ELECTRONICS	binary number	
	5th	BASICS OF DIGITAL	Subtraction of binary numbers in 2's complement	
		ELECTRONICS	method.	
	1 st	BASICS OF DIGITAL	Use of weighted and Un-weighted codes & write Binary	
	-	ELECTRONICS	equivalent number for a number in 8421, Excess-3 and	
	4	BASICS OF DIGITAL	Gray Code and vice-versa.	
	2 nd	ELECTRONICS		
	3 rd	BASICS OF DIGITAL	Importance of parity Bit.	
2^{ND}	5	ELECTRONICS		
	4^{th}	BASICS OF DIGITAL	Logic Gates: AND, OR, NOT, NAND, NOR and EX-OR	
	4	ELECTRONICS	gates with truth table.	
		BASICS OF DIGITAL	Realize AND, OR, NOT operations using NAND, NOR	
	5th	ELECTRONICS	gates.	
		BASICS OF DIGITAL	Different postulates and De-Morgan's theorems in	
	1^{st}	ELECTRONICS	Boolean algebra	
		BASICS OF DIGITAL	Use Of Boolean Algebra For Simplification Of Logic	
	2^{nd}	ELECTRONICS	Expression	
3 RD	3 rd	BASICS OF DIGITAL		
	3	ELECTRONICS		
	4 th	BASICS OF DIGITAL	Karnaugh Map For 2,3,4 Variable, Simplification Of SOP	
	+	ELECTRONICS	And POS Logic Expression Using K-Map.	
	5 th	BASICS OF DIGITAL		
	5	ELECTRONICS		
	1 St	COMBINATIONAL LOGIC	Give the concept of combinational logic circuits.	
	1^{st}	CIRCUITS		
		COMBINATIONAL LOGIC		
	2^{nd}	CIRCUITS		
		COMBINATIONAL LOGIC		
	3 rd	CIRCUITS	Half adder circuit and verify its functionality using truth	
4^{TH}	5	Cincons	table	
	4 th	COMBINATIONAL LOGIC	Realize a Half-adder using NAND gates only and NOR	
	7	CIRCUITS	gates only.	
	5 th	COMBINATIONAL LOGIC	Full adder circuit and explain its operation with truth	
		CIRCUITS	table.	
	1^{st}	COMBINATIONAL LOGIC	Realize full-adder using two Half-adders and an OR –	
		CIRCUITS	gate and write truth table	

5^{TH}	2 nd	COMBINATIONAL LOGIC		
	2"	CIRCUITS		
	3 rd	COMBINATIONAL LOGIC CIRCUITS	Full substractor circuit and explain its operation with truth table.	
	4 th	COMBINATIONAL LOGIC CIRCUITS		
	5 th	COMBINATIONAL LOGIC CIRCUITS	Operation of 4 X 1 Multiplexers and 1 X 4 demultiplexer	
	1 st	COMBINATIONAL LOGIC CIRCUITS		
6 TH	2 nd	COMBINATIONAL LOGIC CIRCUITS	Working of Binary-Decimal Encoder & 3 X 8 Decode	
	3 rd	COMBINATIONAL LOGIC CIRCUITS		
	4 th	COMBINATIONAL LOGIC CIRCUITS	Working of Two bit magnitude comparator	
	5 th	COMBINATIONAL LOGIC CIRCUITS		
	1 st	SEQUENTIAL LOGIC CIRCUITS	Give the idea of Sequential logic circuits	
	2 nd	SEQUENTIAL LOGIC CIRCUITS	State the necessity of clock and give the concept of level clocking and edge triggering	
7^{TH}	3 rd	SEQUENTIAL LOGIC CIRCUITS	Clocked SR flip flop with preset and clear input	
	4 th	SEQUENTIAL LOGIC CIRCUITS	Construct level clocked JK flip flop using S-R flip-flop and explain with truth table	
	5 th	SEQUENTIAL LOGIC CIRCUITS	Concept of race around condition and study of master slave JK flip flop	
	1 st	SEQUENTIAL LOGIC CIRCUITS	Give the truth tables of edge triggered D and T flip flops and draw their symbols.	
8^{TH}	2 nd	SEQUENTIAL LOGIC CIRCUITS	Applications of flip flops.	
-	3 rd	SEQUENTIAL LOGIC CIRCUITS	Define modulus of a counter	
	4 th	SEQUENTIAL LOGIC CIRCUITS	4-bit asynchronous counter and its timing diagram.	
	5 th	SEQUENTIAL LOGIC CIRCUITS	Asynchronous decade counter.	
	1 st	SEQUENTIAL LOGIC CIRCUITS	4-bit synchronous counter.	
9 TH	2 nd	SEQUENTIAL LOGIC CIRCUITS	Distinguish between synchronous and asynchronous	
9	3 rd	SEQUENTIAL LOGIC CIRCUITS	State the need for a Register and list the four types of	
	4 th	SEQUENTIAL LOGIC CIRCUITS	Working of SISO, SIPO, PISO, PIPO Register with truth	
	5 th	SEQUENTIAL LOGIC CIRCUITS	table using flip flop.	
	1 st	8085 Microprocessor	Introduction to Microprocessors, Microcomputers	
10^{TH}	2 nd	8085 Microprocessor	Architecture of Intel 8085A Microprocessor and description of each block	
	3 rd	8085 Microprocessor	Pin diagram and description	
	4 th	8085 Microprocessor	Stack, Stack pointer & stack top	
	5 th	8085 Microprocessor	Interrupts	
	1 st	8085 Microprocessor	Opcode & Operand,	
11 TH	2 nd	8085 Microprocessor	Differentiate between one byte, two byte & three byte	
11	3 rd	8085 Microprocessor	Instruction set of 8085 example	
	4 th	8085 Microprocessor		

	5 th	8085 Microprocessor	Addressing mode	
12 TH	1 st			
	2 nd		Fetch Cycle, Machine Cycle, Instruction Cycle, T-State	
	3 rd	8085 Microprocessor	Timing Diagram for memory read	
	4 th	8085 Microprocessor		
	5 th	8085 Microprocessor	Timing Diagram for 8085 instruction	
	1 st	8085 Microprocessor		
13 TH	2 nd	8085 Microprocessor	Counter and time delay.	
15	3 rd	8085 Microprocessor		
	4 th	8085 Microprocessor	Simple assembly language programming of 8085	
	5 th	8085 Microprocessor		
	1 st	INTERFACING AND SUPPORT CHIPS	Basic Interfacing Concepts	
	2 nd	INTERFACING AND SUPPORT CHIPS		
14 TH	3 rd	INTERFACING AND SUPPORT CHIPS		
	4 th	INTERFACING AND SUPPORT CHIPS	Functional block diagram and description of each block of Programmable peripheral interface Intel 8255	
	5 th	INTERFACING AND SUPPORT CHIPS		
	1 st	INTERFACING AND SUPPORT CHIPS		
15 TH	2 nd	INTERFACING AND SUPPORT CHIPS	Application using 8255: Seven segment LED display, Square wave generator, Traffic light Controller	
	4 th	INTERFACING AND SUPPORT CHIPS		
	5 [™]	INTERFACING AND SUPPORT CHIPS		