Academic lesson plan for 2nd semester (summer 2022)

Name of teaching faculty: Sri Saroj Kumar Sahu, Lecturer (Mechanical)

Semester: 2nd (Gr- I) No. of periods per week: 4 End semester Exam: 80 Total Marks: 100 Discipline/Deptt: Mathematics & Science

Subject (Theory): TH4: Engg. Mechanics Total Periods: 60 Class Test(IA): 20

Week	Date	Period	Unit/ Chapter	Topics to be covered
1st		1	1.1	Fundamentals. Definitions of Mechanics, Statics, Dynamics, Rigid Bodies,
		1	1.2	Force System. Definition, Classification of force system according to plane & line of action.
		1	1.2	Characteristics of Force & effect of Force. Principles of Transmissibility & Principles of Superposition. Action & Reaction Forces & concept of Free Body Diagram.
		1	1.3	Resolution of a Force. Definition, Method of Resolution, Types of Component forces, Perpendicular components & non- perpendicular components.
		1	1.4	Composition of Forces. Definition, Resultant Force, Method of composition of forces
		1	1.4.1	Analytical Method such as Law of Parallelogram of forces & method of resolution.
2 nd		1	1.4.2	Graphical Method. Introduction, Space diagram, Vector diagram, Polygon law of forces.
		1	1.4.3	Resultant of concurrent, non-concurrent & parallel force system by Analytical & Graphical Method.
3rd		1	1.5	Moment of Force. Definition, Geometrical meaning of moment of a force, measurement of moment of a force & its S.I units.
		1	1.5	Classification of moments according to direction of rotation, sign convention,
		1	1.5	Law of moments, Varignon's Theorem
		1	1.5	Couple – Definition, S.I. units, measurement of couple
		1	1.5	properties of couple, simple problems on Force systems
4 th		1	2.1	Introduction to Equilibrium, Definition, condition of equilibrium
		1	2.1	Analytical & Graphical conditions of equilibrium for concurrent, non-concurrent & Free Body Diagram.
		1	2.2	Lami's Theorem – Statement, Application for solving various engineering problems.
5 th		1		Revision- CH-1& 2
		1	3.1	Definition of friction& Frictional forces

	1	3.1	Define Limiting frictional force & Coefficient of Friction.
	1	3.1	Define Angle of Friction & Repose & Laws of Friction
	1	3.1	Advantages & Disadvantages of Friction.
Cth	1		Friction problem
6 th	1		Friction problem
	1		Friction problem
		3.2	Equilibrium of bodies on level plane – Force applied on
	1		horizontal plane
	1		Problem solved of Force applied on horizontal plane
7 th		3.2	Equilibrium of bodies on level plane – Force applied on
	1		inclined plane
	1	3.2	Problem solved of Force applied on inclined plane
	1	3.3	Ladder, Wedge Friction
0.1	1		Problems solved on Ladder friction
8 th	1		Problems solved on Ladder friction
	1		Problems solved on wedge friction
	1		Revision- CH-3
			Introduction to centroid and M.I, Lamia's Theorem -
	1	4.1	Statement, Application for solving various engineering
9th			problems.
9			centroid of geometrical figures such as squares,
	1	4.1	rectangles, triangles, circles, semicircles & quarter
			circles
	1	4.1	centroid of composite figures, problems on centroid
	1	4.2	Moment of Inertia – Definition, Parallel axis &
	1	4.2	Perpendicular axis Theorems
10 th	1	4.2	M.I. of plane lamina & different engineering sections.
	1		Problems on M.I
	1		Problems on M.I
	1	5.1	Definition of simple machine, velocity ratio of simple and
	1		compound gear train
	1	5.1	Explain simple & compound lifting machine
11 th	1	5.1	Define M.A, V.R.& Efficiency and State the relation
	1		between them
	1	5.1	State Law of Machine, Reversibility of
	1		Machine, Self- Locking Machine.
	1	5.2	Study of simple machines – simple axle & wheel
12 th	1	5.2	Problems solved on simple axle & wheel
12	1	5.2	Discussion about Single purchase crab winch
	1	5.2	Problem solved on Single purchase crab winch
	1	5.2	Discussion about double purchase crab winch
13 th	1	5.2	Problems on double purchase crab winch
13	1	5.2	Discussion of Worm & Worm Wheel
	1	5.2	Problems on Worm& Worm Wheel
14 th	1	5.2	Screw Jack

	1	5.2	Problems solved on screw jack
	1	5.3	Types of hoisting machine-like derricks etc. Their use
			and working principle
	1	6.1	Kinematics & Kinetics, Principles of Dynamics, Newton's
			Laws of Motion.
15 th	1	6.1	Motion of Particle acted upon by a constant force,
			Equations of motion
	1	6.2	De-Alembert's Principle, Work, Power, Energy & its
			Engineering Applications.
	1	6.3	Kinetic & Potential energy & its application, Momentum
			& impulse, conservation of energy & linear momentum
	1	6.3	collision of elastic bodies, and Coefficient of Restitution

Sri Saroj Kumar Sahu, Lecturer (Mechanical), Dept. of Mechanical Engg.