III-SEM./ETC/AE\&IE/CSE/IT/MECHATRONICS/ ELECTRICAL(INST \& CTRL/ECE/ 2021(W)
 TH-III Digital Electronics

Full Marks: 80
Time- 3 Hrs
Answer any five Questions including Q No.1\& 2 Figures in the right hand margin indicates marks

1. Answer All questions
2×10
a. State De-Morgan's theorems.
b. Convert $(10110101)_{2}$ from binary to grey code.
c. Find out the number of input lines, output lines and select lines in : (i) 1:8 DeMux (ii)16:1 Mux
d. Write down the truth table of half subtractor.
e. Define race-around condition in flip flop and suggest a method to overcome it.
f. Difference between combination and sequential logic circuit.(any 4)
g. Mention the type of flip flops used in : (i)Ripple Counter (ii)Shift Register
h. Write the excitation table of D-flip flop.
i. List down different types of: (i) Analog to Digital Convertors ,(ii) Digital to Analog Convertors
j. Define Fan In and Fan Out.

Answer Any Six Questions
a. Simplify the below given expression using Karnaugh's map and draw the logic circuit using logic gates.
$\mathrm{F}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})=\Sigma \mathrm{m}(0,2,3,4,7,9,10,11,15)+\mathrm{d}(1,6,8)$
b. Explain the function of 4: 1 MUX with neat diagram and truth table.
c. Design the operation of full adder with the help of truth table and circuit diagram.
d. Design a JK flip flop using a RS flip flop.
e. With neat circuit diagram, Explain the working of R-2R ladder type DAC.
f. Write any 5 differences between SRAM and DRAM.
g Draw CMOS logic circuit of NAND and NOR gates.

3 Realize all the logic gates (NOT, AND, OR, NAND, NOR, XOR, XNOR) using NAND gates only.
Design a 2-bit magnitude comparator using logic gates.
Sketch the logic diagram of clocked JK Flip - Flop. Explain its working with 10 functional table.
Explain briefly SISO, SIPO, PISO and PIPO shift register.
7 Design a mod-6 synchronous up counter.

