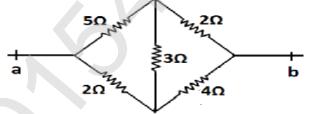
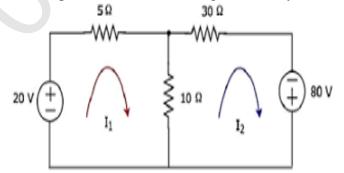
III-SEM/ETE/AE & IE/ECE/ 2021(W)

TH-II Circuit Theory

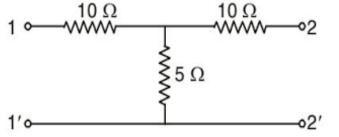

Full Marks: 80 Time- 3		'S
	Answer any five Questions including Q No.1& 2 Figures in the right hand margin indicates marks	
1.	Answer All questions	2 x10
a.	Convert a 20V voltage source having internal resistance of 10 ohm into an equivalent current source.	
b.	A 12V voltage source, 4Ω resistor and 6Ω resistor are connected in series. Find the voltage drop at each resistor using voltage division rule.	
с.	State Maximum power transfer theorem.	
d.	Under which conditions superposition theorem is applicable?	
e.	Define Form Factor.	
f.	Find out the Time constant of a series RC circuit if $R = 1K\Omega$, C=1mF.	
g.	Draw the resonance curve of Series RLC and Parallel RLC circuit.	
h.	Represent a parallel RLC circuit of R=10 Ω , L=5H and C=100mF in Laplace Domain.	
i.	Draw a simple resistive (a) T-network (b) Pi-network	

5X6


j. Write down the voltage and current equations related to Z-parameters and Yparameters of a two port network.

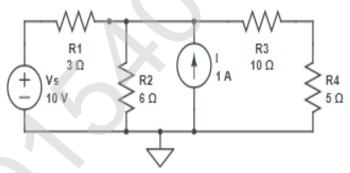
2. Answer **Any Six** Questions

a. Find out the equivalent resistance between node 'a' and 'b'.


b. Find loop currents I_1 and I_2 using mesh analysis in the below circuit.

c. Explain the step followed to solve a circuit using Norton's theorem.

- d. In an AC Circuit, Derive the expression for current in pure capacitor. Draw the phasor for Voltage and Current.
- e. Determine the values of R, L, C of a parallel RLC circuit, If it's resonant frequency is 10KHz and Quality factor is 20.
- f. Find the z-parameters of the circuit given below.


3

- g Determine the impulse response of series RC and RL circuit.
 - Determine the current flowing in Resistor R_L.

10

4 Find the current in 5Ω resistor in the below shown circuit using Thevenin's theorem. 10

- 5 A $50 \ge 0^{\circ}$ V ac supply of 50Hz frequency is applied to a Series RL circuit having 10 R=100 Ω , L=20mH. Determine current, power factor, active power, reactive power and draw the power triangle.
- Derive the expression for resonant frequency in a series RLC circuit. If R=2Ω, 10
 L=1mH, C=4nF, Determine Resonance Frequency, Q-factor, Bandwidth and half power frequencies.
- 7 Define and classify filters. Explain various types of filters with frequency response. 10