III-SEM./ELECTRICAL/ETE/AE&IE/EME/ ELECTRICAL[PT] /EEE/ELECTRICAL(INST & CTRL)/ECE/2021(W) TH-I ENGINEERING MATHEMATICS -III

Full Marks: 80

Time- 3 Hrs

2 x 10

Answer any five Questions including Q No.1& 2 Figures in the right hand margin indicates marks

- 1. Answer **All** questions
 - a. What are homogeneous equations? State the condition to get non-trivial solutions for homogeneous equations.
 - b. Find Particular Integral of $(D^2 + 16)y = e^{-4x}$.
 - ^{c.} Frame a differential equation for the function $z = f\left(\frac{xy}{z}\right)$.
 - d. Write the Existence Theorem of Laplace Transform.
 - e. Find $L^{-1}\left\{\frac{2S}{S^2-9}\right\}$.
 - f. Define Periodic function. Give one example of periodic function with its period.
 - g. Write Newton Raphson Formula to find a root of equation f(x) = 0.
 - h. Evaluate $\Delta(ab^{cx})$.
 - i. State Trapezoidal Rule. Why this is called Trapezoidal Rule?

j. Express
$$\frac{3i}{4-i}$$
 in the form of $a + ib$.

2. Answer **Any Six** Questions

- a. Find the root of the equation $2x^3 2x 5 = 0$ correct to 3-places of decimal by Newton Raphson Method.
- b. Find the Laplace Transform of $f(t) = cos^2(3t)$
- c. State Dirichlet's condition for a function to be expanded in Fourier Series. Find a_0 of the Fourier Series for the function f(x) = 2ln $0 \le x \le 2\pi$.
- d. Evaluate $\int_{2.5}^{4} lnx \, dx$ using Trapezoidal Rule with 5 subintervals.
- e. Find the Inverse Laplace Transform of

$$F(s) = \frac{1}{(s+1)(s^2-1)}$$

5x6

f.	Find $f(x)$ when x=32 from the following data using Newton Forward
	Interpolation Formula

Х	30	35	40	45	50
f(x)	15.9	14.9	14.1	13.3	12.5

g	Solve the following differential equation
	$(D^3 - 7D + 6)y = 0$

3	i)	Express $f(x) = \frac{1}{2}(\pi - x)$ as a Fourier Series in the interval $(0, 2\pi)$			
		Hence deduce the value of the series $1 - \frac{1}{2} + \frac{1}{5} - \frac{1}{7} + \cdots$			

ii) Find $\sqrt{-15+8i}$

4	i)	Solve the following partial differential equation	6
		$x^{2}(y-z)p + y^{2}(z-x)q = z^{2}(x-y)$	

ii) Evaluate $\int_0^6 \frac{dx}{4x+5}$ using Simpson's $\frac{1}{3}rd$ Rule correct up to 3-places of decimal taking h=1.

3

5

5

5

- 5 i) Solve the differential equation $(D^2 + 5D + 6)y = e^{-2x} \sin 2x$
 - ii) Find the Laplace Transform of $L(t^3e^{-3t})$
- 6 i) Find k if the following equations are consistent 5 X+2y-3z=-2 3x-y-2z=1 2x+3y-5z=k
 - ii) Find f(x) when x=15

<i>)</i>	X	3	7	11	19	_
	F(x)	42	43	47	60	3
i)	Solve the following differential equation				5	

7 i) Solve the following differential equation $(D^2 - 2D - 3)y = e^{3x} + \sin x$

ii) If ω is the cube root of unity, show that $(1 - \omega + \omega^2)^6 + (1 + \omega - \omega^2)^6 = 128$