Notes on Digital Signal Processing

by

Satya Narayan Panigrahi

Lecturer in Electronics and Telecommunication Engineering
UGMIT, Rayagada

SAMPLING THEORY:-
(1) It is a process to convert continuous time signals in to discrete signal.
(2) Sufficient number of samples must be taken, so that the original signal is reconstructed properly:
(3) Number of samples to be taken depends on maximum signal Frequency present in the signal.
(4) Different Types of sampling are:
(a) Ideal samples,
(b) Natural samples,
(c) Flat Top samples.
Statement of sampling Theorem:-
(i) A band limited signal of finite energy, which has no Frequency component higher than $f_{m}(\mathrm{~Hz})$, is completely described by its sample values atuniforem intervals. less than (ore) equal to $\frac{1}{2 \text { form }}$.

$$
T_{s} \leqslant \frac{1}{2 f_{m}}
$$

(ii) A Band limited signal of finite energy, which has no frequency components higher than $f_{m}(H Z)$, may be completely recovered from the knavedge of its samples taken at the rate of 2 fm samples per second.

$$
F_{S} \geqslant 2 \cdot f_{m}
$$

\rightarrow If the signal is band limited to $f m$ then

$$
x(\omega)=0 \text {, wat } \omega>w_{m}
$$

$$
\left.\begin{array}{l}
\hat{\partial}_{T S}(t)=\frac{1}{T S}\left[1+2 \cdot \cos \omega_{S} t+2 \cdot \cos 2 \omega_{S} t+2 \cdot \cos 3 \omega_{S} t\right. \\
+\cdots I
\end{array}\right]=\begin{aligned}
+\cdots(t) & \text { Multiplier e } g(t)=x(t) \cdot \hat{\sigma}_{T S}(t)
\end{aligned}
$$

\Leftrightarrow In Frequency Domain, $G(\omega)=\frac{1}{T_{s}}\left[x(\omega)+x\left(\omega-\omega_{s}\right)+x\left(\omega+\omega_{s}\right)\right.$

$$
\left.+\quad+x\left(\omega-2 \omega_{s}\right)+x\left(\omega+2 \omega_{s}\right)+\cdots \cdot\right]
$$

original signal extracted by passing
through LPF.

$$
w_{s}>2 \omega_{m}
$$

$\leftrightharpoons A S$ long as : Gs $>2 \mathrm{fm}, G(\omega)$ will repeat periodically without overlapping.
\rightarrow spectrum $G(\omega)$ extends up to ∞ (infinite) frequency but our purpose is to extract original spectrum $X(\omega)$ out of the spectrum $G(\omega)$.
\rightarrow At reeceivere we place LPF of Frequency ω_{m}. So we can extract original intoremation.
$\rightarrow F_{S}>2 \mathrm{fm}$, To a void successive cycles not to overelape. $F_{S}=2 f_{m}$, successive cycles, just touch each other. $\mathrm{Fs}_{\mathrm{s}}<2 \mathrm{fm}$, successive cycles overlape each other.
\rightarrow Hence, fore reconstruction without distortion $f_{s} \geqslant 2 f_{m}$
$\rightarrow F_{s}=2 f_{m}$, Hence F_{s} is referereed as Nyquist Rate. $T_{s}=\frac{1}{2 F_{m}}$, T_{s} is Nyguist Interval

\rightarrow If $F_{S} \leqslant 2 \mathrm{Fm}_{\mathrm{m}}$, then successive samples cycles of $G(w)$ will overelape each other.
\rightarrow Due to Aliasing effect, it is not possible to recover e original signal $X(t)$ by LPF.
\rightarrow Hence due to overelape of one region to other region, signal $x(t)$ is distorted.
\rightarrow so, before we go fore sampling, we pass original signal through LPF. This is even refereed as pre-alias fluter, other name is Band limitfittere.
\rightarrow In shore, to avoid aliasing:
(1) pres aliasing filter can be used.
(2) $\mathrm{F}_{\mathrm{s}} \geqslant 2 \mathrm{Fm}_{\mathrm{m}}$

Examples based on sampling and Nyquist Rate:-
Que:- $X(t)=3 \cdot \cos (50 \pi t)+10 \cdot \sin (300 \pi t)-\cos (100 \pi t)$
calculate the Nyquist Rate fore this signal.
Son:- $F_{1}=\frac{w_{1}}{2 \pi}=25 \mathrm{~Hz}, f_{2}=\frac{\omega_{2}}{2 \pi}=150 \mathrm{~Hz}, f_{3}=\frac{\omega_{3}}{2 \pi}=50 \mathrm{~Hz}$
Maximum frequency $f_{m}=150 \mathrm{~Hz}$
Nyquist Rate $F_{S}=2 \mathrm{f}_{m}=2 \times 150=300 \mathrm{~Hz}$
Que:- Find the Nyquistrate and mlyquist Interval fore the $\operatorname{signal} x(t)=\frac{1}{2 \pi} \cdot \cos (4000 \pi t) \cdot \cos (1000 \pi t)$.
son:- $x(t)=\frac{1^{2 \pi}}{4 \pi}[2 \cdot \cos (4000 \pi t) \cdot \cos (1000 \pi t)]$

$$
=\frac{1}{4 \pi}[\cos (3000 \pi t)+\cos (5000 \pi t)]
$$

$f_{1}=\frac{w_{1}}{2 \pi}=1500 \mathrm{~Hz}, f_{2}=\frac{w_{2}}{2 \pi}=2500 \mathrm{~Hz}$, Maximum Frequency
$F_{m}=2500 \mathrm{~Hz}$, Nlyquist Rate $F_{S}=2 f_{m}=2 \times 2500=5000 \mathrm{~Hz}$,
Nyquist Interval $T_{s}=\frac{1}{F_{s}}=\frac{1}{5000}=0.2 \mathrm{msec}$
Que:- Determine the Hyquist rate fore a continuous time signal $x(t)=6 \cdot \cos 50 \pi t+20 \cdot \sin 300 \pi t-10 \cdot \cos 100 \pi t$.
son:- $F_{1}=\frac{\omega_{1}}{2 \pi}, F_{2}=\frac{\omega_{2}}{2 \pi}, F_{3}=\frac{\omega_{3}}{2 \pi}$

$$
=25 \mathrm{~Hz}=150 \mathrm{~Hz}=50 \mathrm{~Hz}
$$

Maximum frequency $f_{m}=150 \mathrm{~Hz}$
Nyguist Rate $F_{S}=2 \mathrm{fm}_{\mathrm{m}}=300 \mathrm{~Hz}$

Instantaneous sampling (ore) Impulse sampling (ore)
Ideal sampling:-
\rightarrow It uses preinciple of multiplication.

\rightarrow To generate ideal samples train, we use switching sampler. \rightarrow If we assume, closing time $t \rightarrow 0$, then it has to be consider ideal impislse train.
\rightarrow Impulse Train $\sigma_{T_{s}}(t)=\sum_{n=-\infty}^{\infty} \delta\left(t-n T_{s}\right)$
\Leftrightarrow output $g(t)=x(t) \cdot \partial_{T S}(t)=x(t) \sum_{n=-\infty}^{\infty} \partial\left(t-n T_{s}\right)$
\leftrightarrow In Frequency Domain, $G(\omega)=F_{S} \cdot \sum_{n=-\infty}^{\infty} x\left(F-\cap F_{S}\right)$
\leftrightarrow practically, This method is not possible. High noise interference is available. signal energy is very Low.

$-x$ -
$x \cdots$
NATURAL SAMPLING:(1) It uses chopreng principle.

$$
\begin{aligned}
c(t) & =\frac{\gamma \cdot A}{T_{S}} \cdot \sum_{n=-\infty}^{\infty} \sin \left(F_{n} \tau\right) \cdot e^{j 2 \pi f_{s} t} \\
G g(t) & =x(t), \text { for } c(t)=A \\
g(t) & =\theta, \text { for } c(t)=0
\end{aligned}
$$

\rightarrow So, Mathematically $g(t)=x(t) \cdot c(t)$

$$
\begin{aligned}
& \text { Mathematically } g(t)=x(t) \cdot c(t) \\
& =\frac{\gamma A}{T_{s}} \sum_{n=-\infty}^{\infty} x(t) \cdot \sin c\left(F_{n} \cdot \gamma\right) \cdot e^{j 2 \pi f_{S} t}
\end{aligned}
$$

\rightarrow Frequency Domain

$$
\begin{aligned}
& \text { Frequency Dowain } \\
& G(w)=\frac{\gamma \cdot A}{T_{s}} \sum_{n=-\infty}^{\infty} \sin \left(n f_{s} \tau\right) \cdot x\left(f-\cap f_{s}\right)
\end{aligned}
$$

\rightarrow This method is used practically. Noise interterence is Less. Because $g(t)$ sampled output impulses have finite pulse duration (τ) and finite Energy.

FLAT-TOP SAMPLING (PAM):-
\rightarrow It uses sample and hold circuit.
\rightarrow It is practically possible lite natural sampling but Flat top sampling is easier e compared to natural sampling.
\rightarrow It has very high noise interference.

$$
\hat{\sigma}_{T S}(t)=\sum_{n=-\infty}^{\infty} \sigma^{\infty}\left(t-n T_{S}\right)
$$

$\gamma=$ Time period that capacitor holds the output.
$H(t)=$ function of Discharge
$S(t)$ segiten up to time period T.

$$
\begin{aligned}
\Rightarrow g(t) & =S(t) \cdot H\left(t_{)}\right) \\
& =\sum_{n=-\infty}^{\infty} X(t) \cdot h\left(t-n T_{s}\right)
\end{aligned}
$$

In frequency Domain $G(\omega)=f_{S} \cdot \sum_{n=-\infty}^{\infty} x\left(F-n F_{S}\right) \cdot H(F)$
\rightarrow By sampling switch, sampling can be done, Discharge switch will define the time period up to which capacitor e will charge. By pressing Discharge switch, capacitor will discharge. By precessing on to sampling switch, then sampled output obtained that is constant voltage which is similar across capacitore. so, sampling switch is identical to impulse train switch.
sampling switch or l \rightarrow capacitore will charge Sampling switch or
Discharge switch or \rightarrow capacitor will discharge
and output will zero.
performance comparison of sampling Techniques:-
(Aid) performance parameters:
(1) Sampling principle:-
\rightarrow In Ideal Sampling, Multiplication is done.
\leftrightarrow In Natural Sampling, chopping is done.
\rightarrow In flat Top sampling, sample and Hold circuit is used.
(2) Generation circuit:-
\rightarrow In Ideal sampling,
\rightarrow In Natural sampling;

\Leftrightarrow In Flat to op $\operatorname{sampling}$,

(3) WaveForms:-

Discharge

Ideal sampling
(4) Feasibility:-

Natureal sampling

Flat Top sampling
\rightarrow Ideally sampling practically not possible,
\rightarrow Natural sampling practically used.
\rightarrow Flat Top sampling practically used.
(4) Noise interference:-
\rightarrow In Ideal sampling Noise interference is very high, In Natural sampling it is less, and in flattop Sampling Noise Interference is high.
(5) Time Domain Representation:-
$g(t)=\sum_{n=-\infty}^{\infty} x(t) \cdot \sigma\left(t-n T_{s}\right) \quad$ (For I deal sampling)

$$
\begin{aligned}
& g(t)=\sum_{n=-\infty} x(t) \cdot \sigma(t-n(s) \\
& g(t)=\frac{\psi A}{T_{s}} \sum_{n=-\infty}^{\infty} x(t) \cdot \operatorname{sinc}\left(n f_{s} \gamma\right) \cdot e^{j 2 \pi f_{s} t} \\
&\quad \text { [Fore Natural sampling] }] \\
& g(t)=\sum_{n=-\infty}^{\infty} x(t) \cdot h\left(t-n T_{s}\right) \text { [Fore Flat Top sampling.] }
\end{aligned}
$$

(6) Frequency Domain Representation:-
$G(f)=f_{S} \cdot \sum_{n=-\infty}^{\infty} x\left(F-n f_{S}\right) \quad$ [Fore Ideal sampling.]
$G(F)=\frac{\Psi^{\prime} A}{T_{S}} \cdot \sum_{n=-\infty}^{\infty} \operatorname{sinc}\left(n F_{S} \tau^{\prime}\right) \cdot x\left(F-\cap f_{S}\right)\left[\begin{array}{l}\text { Fore Natural } \\ \text { sampling }\end{array}\right]$ sampling. 7
$G(F)=F_{S} \cdot \sum_{n=-\infty}^{\infty} x\left(F-\cap F_{S}\right) \cdot H(F)$ [For Flat Top sampling.]

$$
r=1000 \text { baud; }
$$

$$
\begin{aligned}
& n=\frac{R}{r}=\frac{8000}{1000}=8 \text { bitq/element } \\
& \text { Total number elements } L=2^{7}=2^{8}=256
\end{aligned}
$$

$$
\dot{\delta}=7 \cdot i=u
$$

$$
\begin{aligned}
& \text { a baud carried by each signal element? How many } \\
& \text { are signal elements do we need? }
\end{aligned}
$$

$$
\text { pro } 8 d 90008 \text { the }
$$

$$
91=y_{6} \cdot={ }_{6} 6=7
$$

$$
\text { r8dg } 0008=8 \overline{\vdots \cdot \operatorname{VOS}}
$$

QUANTIZATION:-
\rightarrow A continuous signal such as voice has a continuous range of Amplitudes therefore its samples have a continuous amplitude range.
\rightarrow In otherworld we can say, with in the finite Amplitude range of signal we can Find an infinite number of Amplitude levels.
$\leftrightarrow \rightarrow$ At is not necessary to transmit the exact amplitude of the samples because any human sense (the ear ore the eye) works as an ultimate receiver that can detect fünte intensity differences.
\rightarrow This means that the original continuous signal maybe approximated by a signal constructed of discrete amplitudes selected on a minimum ererore bases from an available set.
\rightarrow Amplitude Quantization is defined as the process of treansforming the sample amplitude $m\left(n T_{s}\right)$ of a message signal $m(t)$ at time $t=n T_{s}$ in to a discrete amplitude $m_{q}\left(n T_{s}\right)$ taken freon a finite set of possible Amplitudes.
\rightarrow quantizere can be of a uniform ore non-unéforen type. \longrightarrow In a uniform quantizere, the representation levels are uniformly spaced otherwise the quantizer is non uniform.
\rightarrow The quantizere characteristics can be of two types
a) Mid tread
(b) Midrise.

(a) Midtreead Type

QUANTIZATION PROCESS:-
\rightarrow Total dynamic range of the signal is divided in to L equal number of steps.
\rightarrow middle of each step will be selected as quantization Voltage. \rightarrow Each of Voltage corresponding to a step well be rounded off to middle of the step (ore) each of the sample will be rounded oft to one of the nearest quantization voltage. Take $L=4$
$1 \mathrm{y} \rightarrow 00$
$3 \mathrm{~V} \rightarrow 01$ Encoded the
$5 \mathrm{~V} \rightarrow 10$ quantization
$7 v \rightarrow 11$ voltage. 7

$$
\text { step size } A=\frac{x_{\text {max }} \sim V_{\text {min }}^{\text {Numberot Levels }}=\frac{8-0}{4}=2}{}= \pm=
$$

$$
\text { Que }(\text { max })=\text { Maximum quantization Erereore }= \pm \frac{\Delta}{2}
$$

NONUNIFORM QUANTIZATION:-
\rightarrow If quantization characteristic\&
is nonlinear then stepSize is not constant, it means quantization is nonuniform quantization.
\rightarrow In Non unciform quantization, stepsize reduce with respect to reduction. in signal so quantization noise decreases. \rightarrow By companding we can achieve it. \rightarrow Non uniform quantization is.genereally used fore speech and music signals.
\rightarrow crest factor $=\frac{\text { peak value of signal }}{\text { RMS value of signal }}=\frac{X_{\text {max }} .}{X_{\text {rems }}}$ \rightarrow crest factor usually verfigh for speech and music Signals.
\longrightarrow signal power $p=\frac{x^{2}(t)}{R}$, where $x(t)=\begin{gathered}\text { Mean value } \\ \text { of signal }\end{gathered}$ of signal
$R=1$ for normalized power

$$
\text { So, power } P=x^{2}(t)
$$

\rightarrow crest factor $C \cdot F=\frac{X_{\text {max }}}{X_{\text {rems }}}=\frac{X_{\text {max }}}{\sqrt{x^{2}(t)}}=\frac{X_{\text {max }}}{\sqrt{P}}$
\rightarrow Fore normalized signal $X_{\text {max }}=1$

$$
\text { eFF. }=\frac{1}{\sqrt{p}} \Rightarrow p=\frac{1}{(C \cdot F \cdot)^{2}}
$$

\rightarrow for Non sinusoidal signal, signal to noise ratio
where

$$
S N R=3 \times 2^{N} \times p
$$

where e $P=$ power
\rightarrow Fore voice \& speech signal $c F \gg 1$, So $p \ll 1$ Hence $S N R$ is poor
\rightarrow By using Nonuniform quantization, we can change the step size with respect to signal. for weaksignay we decrease the step size and for strong signal we increase the step size. That will improve SHR.
C.OMPANDING:- (i) Companding is Nonuniform quantization.
(2) It is required to be implemented to improve SNR of weak signal. (3) Quantization Noise is given by $N_{q}=\frac{\Delta^{2}}{12}$ for uniform quantization. and N_{q} is very high of weak signals in uniforms quantization. In uniform quantization step size Δ is constant.
(4) Fore Weak signal noise is constant. (5) companding is derelved from two word: (a) compression, (b) Expansion r
$\xrightarrow{\text { Input }}$ Compressor
\rightarrow uniform $\begin{aligned} & \text { Quantizer, }\end{aligned} \rightarrow$ Expander
\rightarrow compressor ampilfy Low signal and attenuates strong signal.
 compressorechareactereistics
linear characteristics
Input
\rightarrow Expander attenuates weak input signal, and amplify the strong input signal

Expander charactererstic

M-LAW COMPANDING FORNONUIFORM QUANTIZATION:-
\rightarrow It is very popular e in USA and Japan. \rightarrow Input, output relationship is given by $\frac{|y|}{X_{\max }}=\frac{\ln \left[1+M \cdot \frac{|x|}{X_{\max }}\right]}{\ln [1+M]}$ $x=$ Amplitude of input signal at a particculare Instant. $y=$ compressed output signal.
$X_{\text {max }}=$ Maximum Amplitude of Input signal
$M=$ unities parameter used to define the amount of compression.

$\left(\frac{|x|}{x_{\text {max }}}\right) \rightarrow \underset{(0 \text { to } 1)}{ } \rightarrow$
\rightarrow Fore $M=0, \frac{|y|}{x_{\text {max }}}=\frac{\ln [1+0]}{\ln [1+0]}=1$, so There e is no compression.
\rightarrow Laregere the value of M, results 1 in to larger compression of output to input with higher amplitude.
$\rightarrow R e c e n t l y$ in digital Transmission we use 8 bit PcM with $H=255$.
A-Law companding for Non uniform $\quad \times \bar{x}$ quantization:Itis very popular e in India and in many European countries.
\rightarrow Itis very popular e characteristics than
countries.
\rightarrow Ithas sightly flatter output chat
\rightarrow Input to output relationship is given by

$$
\frac{|y|}{x_{\max }}=\left\{\begin{array}{ll}
\frac{A|x|}{x_{\max }} & 1+\ln A
\end{array}, 0 \leq \frac{|x|}{x_{\max }} \leq \frac{1}{A}\right.
$$

$$
\begin{aligned}
& \xrightarrow{x} A \\
& \left(\frac{|x|}{x_{\max }}\right) \rightarrow \begin{array}{l}
x_{\text {ane }} \text { ono } 1
\end{array} \\
& \text { "8 ot } 1 . \\
& \longrightarrow \text { If } A=1, \frac{|y|}{x_{\max }}=\frac{A|x| x_{\max }}{1+\ln A}=\frac{|x|}{X_{\max }} \text {, That means } \\
& \text { output }=\text { Input. So There is no compression. } \\
& \rightarrow \text { Larger the values of } A \text {, Larger the compression. Larger } \\
& \text { the value of A, linear characteristics shift towards } \\
& \text { Left. } \\
& \rightarrow \text { In India fore digital } \\
& \text { Telephone system we use } \\
& A=87.6
\end{aligned}
$$

1

INTRODUCTION TO

DIGITAL SIGNAL PROCESSING

1.1 Introduction

Digital Signal Processing (DSP) is an area of science and technology that has developed rapidly over the past few decades. The techniques and applications of DSP are as old as Newton and Gauss and as new as Digital Computers and Integrated circuits (ICs). The rapid development of DSP is a result of the significant advances in Digital Computer technology and IC fabrication.

DSP is concerned with the representation of signals by sequences of numbers or symbols and processing of these sequences. Processing means modification of sequences into a form which is in some sense more desirable.

In another words, DSP is a mathematical manipulation of discrete-time signals to get more desirable properties of the signal, such as less noise or distortion.

The classical numerical analysis formulae such as those used for interpolation, differentiation and integration are also DSP algorithms.

DSP finds application in various fields such as speech communication, data communication, image processing, radar engineering, seismology, sonar engineering, biomedical engineering, acoustics, nuclear science and many others.

DSP can be applied to one dimensional signals as well as multidimensional signals. Example of one dimensional signal is speech and example of two-dimensional signal is image. Many picture processing applications require the use of two dimensional signal processing techniques. Two-dimensional signal processing includes X -ray enhancement, analysis of aerial photographs (these photographs are necessary for detection of forest fire or crop damage), analysis of satellite weather photographs etc. Analysis of seismic data is required in oil exploration, earth quake measurements and monitoring of nuclear tests. These utilize multidimensional signal processing techniques. The impact of DSP
techniques will undoubtedly promote revolutionary advances in many fields of application.A notable example is telephony where digital techniques dramatically increased economy and flexibility in implementing switching and transmission systems.

1.2 Signal Processing Systems

A system responds to particular signals by producing other signals having some desired behaviour.

Signal processing systems are of two types depending on the type of signal to be processed.

1. Continuous-time Systems.

2,Discrete-time Systems.

1.2.1 Continuous-time Systems

Continuous-time systems are the systems for which both input and output are continuous-time signals. $\mathrm{H}(\mathrm{s})$ is the transfer function of a continuous-time system. Fig. 1.1 illustrates the block diagram of a continuous-time system.

Fig. 1.1 Block diagram of continuous-time system.
An example of continuous-time system is an analog filter which is used to reduce the noise corrupting a message signal.

1.2.2 Discrete-time Systems

Discrete-time systems are systems for which both the input and output are discretetime signals. $\mathrm{H}(\mathrm{z})$ is the transfer function of a discrete-time system. Fig. 1.2 illustrates the block diagram of a discrete-time system.

Fig. 1.2 Block diagram of discrete-time system. An example of a discrete-time system is a digital computer.

1.3 Signal Processing

Changing the basic nature of signal to obtain the desired shaping of the input signal is called signal processing. Signal processing is concerned with the representation, transformation, and manipulation of signals and the information they contain.

Signal processing is of two types depending upon the type of signal to be processed.

1. Analog Signal Processing (ASP).
2. Digital Signal Processing (DSP)

1.3.1 Analog Signal Processing

In analog signal processing, continuous-amplitude continuous-time signals are processed. Various types of analog signals are processed through low pass filters, high pass filters, band pass filters and band reject filters to obtain the desired shaping of the input-signal. Another example of analog signal processing is the production of modulated carrier using High Frequency (HF) oscillator, and the modulating audio signal and a modulator. Fig. 1.3 illustrates the block diagram of an ASP system.

Fig. 1.3 Block diagram of ASP system.

1.3.2 Digital Signal Processing

Digital signal processing (DSP) is a numerical processing of signals on a digital computer or some other data processing machine. Fig. 1.4 illustrates the block diagram of DSP system.

Fig. 1.4 Block diagram of DSP system.
A digital system such as digital computer takes input signal in discrete-time sequence form and converts it in discrete-time output sequence.

1.4 Elements of digital signal processing system

1. A signal is a physical quantity that varies with time, space, or any other independent variable.
2. A system is defined as a physical device that performs an operation on a signal.

3 Signal processing is any operation that changes the characteristics of a signal. These characteristics include the amplitude, shape, phase \& frequency content of the signal.
4. The DSP is a numerical processing of signals on a digital computer or some other data processing machine.
5. The block diagram of DSP system is,

Fig. 1.5
6. The input signal is applied to the anti-aliasing Filter. The low pass filter removes the high frequency noise and to band-limit the signal.
7. The sample \& hold provides the discrete time signal to A/D converter.
8. The ADC converts analog signal to digital signal.
9. The DSP may be a large programmable digital computer programmed to perform, the desired operation on the input signal.
10. The output of DSP is converted to analog signal by DAC.
11. The high frequency components in DAC output is released by the reconstruction filter.

1.5 Sámpling of Continuous-Time Signals

There are many ways to sample a continuous-time signal. Here we will discuss only periodic sampling. It is also called uniform sampling.

If $s_{o}(t)$ is a continuous-time signal. Periodical measurement of continuous-time signal is called periodic sampling or uniform sampling.

By periodic sampling of continuous-time signal, we can get discrete-time signal.
Discrete-time signal, $\left.\mathrm{s}_{a}\left(\mathrm{nT}_{s}\right) \equiv \mathrm{S}_{a}(\mathrm{t})\right|_{\mathrm{t}=\mathrm{nT}}$
where T is the sampling period and reciprocal of sampling period is termed as sampling frequency F_{s}.

(b)

Fig. 1.6 (a) Block diagram of a sampler, (b) Periodic sampling of continuous-time signal.

1.5.1 Nyquist Rate

Nyquist rate is defined as minimum sampling rate required for perfect reconstruction of sampled signal at the receiver.

If any signal has highest frequency component $F_{\max }$, then Nyquist rate $=2 \times \mathrm{F}_{\text {max }}$

1.5.2 Sampling Theorem

It is stated as : For perfect reconstruction of sampled signal at receiver, sampling rate or sampling frequency should be greater than or equal to Nyquist rate of the message signal.

According to the sampling theorem,
Sampling rate \geq Nyquist rate, $2 \mathrm{~F}_{\text {max }}$
Periodic sampling establishes a relationship between the time variables t and n of continuous-time and discrete-time signals, respectively.

Consider a continuous-time signal, $\mathrm{s}_{\mathrm{a}}(\mathrm{t})=\mathrm{A}_{\mathrm{s}} \cos \left(2 \pi \mathrm{~F}_{\text {max }} \mathrm{t}+\theta\right)$
Sampling periodically at a sampling rate $\mathrm{F}_{\mathrm{s}}=1 / \mathrm{T}_{\mathrm{s}}$ samples per second produces

$$
\begin{aligned}
s(n)=s_{a}\left(n T_{s}\right)= & A_{s} \cos \left(2 \pi F_{\max } n T s+\theta\right) \\
& =A_{s} \cos \left(2 \pi F_{\max } n \frac{1}{F_{s}}+\theta\right) \\
& =A_{s} \cos \left(2 \pi \frac{F_{m a x}}{F_{s}} n+\theta\right) \\
& =A_{s} \cos (2 \pi f n+\theta),-\infty<n<\infty
\end{aligned}
$$

where $f=\frac{F_{\text {max }}}{F_{s}}$ is the frequency variable for discrete-time signals
$\mathrm{F}_{\text {max }}$ is the frequency variable for continuous-time signals
F_{s} is the sampling rate

1.5.3 Aliasing

When sampling frequency is less than Nyquist rate then aliasing phenomenon occurs
Nyquist rate $=2 \mathrm{~F}_{\max }=2 \times$ Highest frequency component of message signal
If sampling rate $<$ Nyquist rate than it is called under sampling and in this case aliasing phenomenon occurs.

If sampling rate $>$ Nyquist rate then it is called over sampling and in this case no aliasing phenomenon occurs. Infact this is a suitable and necessary condition for sampling process.

Aliasing phenomenon is defined as a phenomenon of high frequency component in a spectrum of a signal seemingly taking on the identity of a lower frequency in the spectrum of its sampled version.

Fig. 1.7 shows spectra of signals showing the sampling relations between analog and digital systems for a properly sampled input signal.

Fig. 1.8 shows the effect of under sampling on the digital frequency response.

Aliasing problem occurs when sampling frequency $F_{s}<2 \mathrm{~F}_{\text {max }}$. In this case sampling frequency F_{s} is not sufficiently high to prevent the shifting of high frequency information into lower frequencies. Such transference of information from one band of frequencies to another is called Aliasing and the resulting frequency response is called an aliased representation of the original signal.

There are two corrective measures which are used to eliminate aliasing

1. a pre-alias low pass filter is used before sampling for attenuating those high frequencies that are not essential for the transmission of information.
2. a pre-alias low pass filtered signal is sampled at a rate slightly higher than the Nyquist rate ($\mathrm{F}_{s}>2 \mathrm{~F}_{\text {max }}$).

(a)

(b)
(a) Spectrum of a band-limited analog signal $s(t)$. (b) Spectrum of a sampled version of signal $s(t)$ for a sampling frequency $F_{s}=2 \mathrm{~F}_{\max }$.
Fig. 1.7 Spectrum of signals showing the sampling relations between analog and digital systems for a properly sampled input.

Fig. 1.8 The effect of under sampling an analog signal on its digital frequency response showing aliasing around the folding frequency $F s / 2$.

1.5.4 Anti-Aliasing Filter

In practice, communication signals have frequency spectra consisting of low frequency components as well as high-frequency noise components. If we select sampling frequency F , all signals with frequency higher than $\frac{\Omega_{\mathrm{s}}}{2}$ appear as signals of frequencies between 0 and $\frac{\Omega_{\mathrm{s}}}{2}$ due to aliasing effect. To avoid aliasing we can choose very high sampling frequency. But sampling at very high frequencies introduces numerical errors. Therefore, to avoid aliasing errors caused by the undesired high frequency signals, an analog lowpass filter, called an anti-aliasing filter is used prior to sampler (refer Fig. 1.2) to filter high frequency components before the signal is sampled.

1.5.5 Sample-and-hold circuit

The output of the anti-aliasing filter is fed to a sample-and-hold $(\mathrm{S} / \mathrm{H})$ circuit. It samples the analog input signal at uniform intervals and holds the sampled value constant as long as the A / D converter takes time for accurate conversion. The use of sample-andhold circuit allow the ADC to operate slowly.

The basic circuit diagram of sample-and-hold circuit is shown in Fig. 1.9.

Fig. 1.9 Sample-and-hold circuit
Diring sample mode the switch S is closed allowing the capacitor C to charge to input voltage. During the hold period the switch remains open, the charge on the capacitor holds the voltage across it. A digital clock controls the switching operation. The voltage follower acts

Fig. 1.10 Input and output waveforms of S/H circuit

1.5.6 Quantization

The process of converting a discrete-time continuous amplitude signal $x(n)$ into a dis-crete-time discrete amplitude signal $x_{q}(n)$ is known as quantization. This is done by rounding off each sample in $x(n)$ to nearest quantization level. Then each sample in $x_{q}(n)$ is represented by a finite number of digits using a coder. If a signal with amplitude range R is represented by an $b+1$ bit word (including sign bit) then the number of values, or quantization levels, that can be represented is 2^{b+1}. The difference between adjacent levels, or the quantization step interms of the range of the signal is

$$
\mathrm{q}=\frac{\text { range of signal }}{\text { Number of quantization levels }}=\frac{\mathrm{R}}{2^{\mathrm{b}+1}}
$$

With fixed point representation of fractional number, if the range of the signal exceeds ± 1, it is necessary to scale the signal.

The process of quantization is shown in Fig. 1.11. The time axis of the discretetime signal is labelled with sample number ($n=0,1,2 \ldots \ldots .$.$) . Corresponding to different$ values of sample number n, the discrete time continuous amplitude signal is shown in Fig. 1.11. We can represent the sample values by a sequence

$$
\begin{aligned}
& x(n)=\{0,0.620,0.85,0.85,0.575,-0.03,-0.625,-0.85,-0.85,-0.575,0\} \\
& \text { Let } a b+1 \text { bit } A D C \text { is used to represent the }
\end{aligned}
$$

2^{b+1} quantization levels is used to represent the above sequence. With $b+1$ binary digits If the input signal has a range obtained and the input can be resolved to one part in 2^{b+1}.

$$
q=\frac{2}{2^{b+1}}=2^{-b}
$$

If $b+1$ is equal to 4 , the quantization step size is equal to 0.125 . Thus the input signal must change atleast 0.125 in order to produce a change in the output.

Fig. 1.11 quantization of Signal
The process of converting $x(n)$ to finite number of digits introduces an error known as quantization noise. It is a sequence $e(n)$ defined as the difference between the quantized value and the actual sample value. Thus $e(n)=x_{q}(n)-x(n)$

Table 1.1 Illustration of quantization using rounding

\mathbf{n}	Sampled value $\mathbf{x}(\mathbf{n})$	binary representation	Rounding	Quantized value	quantization noise $\mathbf{e}(\mathrm{n})=\mathrm{x}_{\mathrm{q}}(\mathrm{n})-\mathrm{x}(\mathrm{n})$
0	0	0.00000000	0.000	0	0
1	0.620	0.10011110	0,101	0.625	0.005
2	0.85	0.11011001	0.111	0.875	0.025
3	0.85	0.11011001	0.111	0.875	0.025
4	0.575	0.10010011	0.101	0.625	0.05
5	-0.03	1.00000111	1.000	0	0.03
6	-0.625	1.10100000	1.101	-0.625	0
7	-0.85	1.11011001	1.111	-0.875	-0.025
8	-0.85	1.11011001	1.111	-0.875	-0.025
9	-0.575	1.10010011	1.101	-0.625	-0.05
10	0	0.00000000	0.000	0	0

10 Digital Signal Processing
1.6 Applications of Digital Signal Processing (DSP)

As a matter of fact, there are various application areas of digital signal proct (DSP) due to the availability of high ier Transform (FFT). Some of these areas are cank processor to imp

1. Speech processing.
2. Image processing.
3. Radar signal processing.
4. Digital communications.
5. Spectral analysis.
6. Sonar signal processing.

Few other applications of digital signal processing (DSP) can be listed as under :

1. Transmission lines.
2. Advanced optical fibber communication.
3. Analysis of sound and vibration signals.
4. Implementation of speech recognition algorithms.
5. Very Large Scale Integration (VLSI) technology.
6. Telecommunication networks.
7. Microprocessor systems.
8. Satellite communications.
9. Telephony transmission.
10. Aviation.
11. Astronomy
12. Industrial noise control.

Now, let us discuss few major applications in brief:

1. Speech Processing

Speech is a one dimensional signal. Digital processing of speech is applied to a wide range of speech problems such as speech spectrum analysis, channel vocoders (voice coders) etc. DSP is applied to speech coding, speech enhancement, speech analysis and synthesis, speech recognition and speaker recognition.

2. Image Processing

Any two-dimensional pattern is called an image. Digital processing of images requires two-dimensional DSP tools such as Discrete Fourier Transform (DFT), Fast Fourier Transform (FFT) algorithms and z-transforms. Processing of electrical signals extracted from images by digital techniques include image formation and recording, im ${ }^{9 g^{g}}$ compression, image restoration, image reconstruction and image enhancement.

3. Radar Signal Processing

Radar stands for "Radio Detection and Ranging". Improvement in signal processing is possible by digital technology. Development of DSP has led to greater sophistication of radar tracking algorithms. Radar systems consist of transmit-receive antenna, digital processing system and control unit.

4. Digital Communications

Application of DSP in digital communication specially telecommunications comprises of digital transmission using PCM, digital switching using Time Division Multiplexing (TDM), echo control and digital tape recorders. DSP in telecommunication systems are found to be cost effective due to availability of medium and large scale digital ICs. These ICs have desirable properties such as small size, low cost, low power, immunity to noise and reliability.

5. Spectral Analysis

Frequency-domain analysis is easily and effectively possible in digital signal processing using Fast Fourier Transform (FFT) algorithms. These algorithms reduce computational complexity and also reduce the computational time.

6. Sonar Signal Processing

Sonar stands for "Sound Navigation and Ranging". Sonar is used to determine the range, velocity and direction of targets that are remote from the observer. Sonar uses sound waves at lower frequencies to detect objects under water.

DSP can be used to process sonar signals, for the purpose of navigation and ranging.

1.7 Advantages of Digital Signal Processing (DSP) over Analog Signal Processing (ASP)

Digital Signal Processing (DSP) has following advantages over Analog Signal Processing (ASP) :

1. Digital signal processing operations can be changed by changing the program in digital programmable system. This means that these are flexible systems.
2. There is a better control of accuracy in digital systems compared to analog systems.
3. Digital signals are easily stored on magnetic media such as magnetic tape without loss of quality of reproduction of signal.
4. Digital signals can be processed of line, i.e., these are easily transported.
5. Sophisticated signal processing algorithms can be implemented by DSP method.
6. Digital circuits are less sensitive to tolerances of component values.
7. Digital systems are independent of temperature, ageing and other external parameters.
8. Digital circuits can be reproduced easily in large quantities at comparatively lower cost.
9. Cost of processing per signal in DSP is reduced by time-sharing of given processor among a number of signals.
10. Processor characteristics during processing, as in adaptive filters can be easily adjusted in digital implementation.
11. Digital system can be cascaded without any loading problems.

1.8 Limitations of DSP

1. System complexity. System complexity increased in the digital processing of an analog signal because of the devices such as A/D and D/A converters and their associated .filters.
2. Bandwidth limited by sampling rate. Band limited signals can be sampled without information loss if the sampling rate is more than twice the bandwidth. Therefore, the signals having extremely wide bandwidths require fast sampling rate A / D converters and fast digital signal processors. But there is practical limitation in the speed of operation of A / D converters and digital signal processors.
3. Power consumption. A variety of analog processing algorithms can be implemented using passive circuit employing inductors, capacitors and resistors that do not need any power, whereas a DSP chip containing over 4 lakh transistors dissipates more
power (1 watt).

EXERCISE

1. What is a signal ? Give some example of signals.
2. Give the classification of signals.
3. What do you mean by signal processing ? Differentiate between analog signal processing
and digital signal processing.
4. What are the basic elements of digital signal processing (DSP) system ?
5. List the advantages of digital signal processing over analog signal prot
6. Explain the importance of DSP in analog signal processing ? brief account of its applications.

2

DISCRETE-TIME SIGNAL AND SYSTEMS

2.1 Introduction

In this modern age of microelectronics, signals and systems play very vital roles. It is an extraordinary subject with diverse applications in areas of science and technology such as circuit design, seismology, communications, biomedical engineering, energy generation and distribution, speech processing etc. Therefore, it is essential that every practising engineer and designer must have a thorough knowledge of this subject. Understanding of signals and systems is also must for study of other parts of engineering such as signal processing and control systems.

2.2 Sigaals

A signal may be a function of time, temperature, position, pressure, distance etc. Some signals in our daily life are music, speech, picture and video signals. Systematically, we can define a signal as "A function of one or more independent variables which contains some information is called a signal'.

- In electrical sense, the signal can be voltage or current. The voltage or current is the function of time as an independent variable.

In daily life, we come across several electric signals such as Radio Signal, T.V. Signal, Computer Signal etc.

Many signals that we come across are naturally generated signals. However, few signals are also generated synthetically.

2.3 Discrete - Time Signals

Discrete-time signals are defined for discrete values of an independent variable (time). Discrete-time signal is not defined at instants between two successive samples.

Discrete-time signals are represented in two ways

$$
\begin{equation*}
s(n), \quad N_{1} \leq n \leq N_{2} \tag{2.1}
\end{equation*}
$$

where N_{1} and N_{2} are the first and the last sample point, respectively in a given discrete. time signal.

It represents non-uniformly spaced samples and these are shown in Fig. 2.1(a).

$$
\mathrm{s}\left(\mathrm{nT}_{\mathrm{s}}\right), N_{1}<n<N_{2}
$$

It represents uniformly spaced samples and these are shown in Fig. 2.1(b).

Fig. 2.1 (a) Discrete-time signal showing non-uniformly spaced samples (there is no sampling period T) (b) Discrete-time signal showing uniformly spaced samples.

2.3.1 Representation of Discrete-Time Signals

Discrete-time signal sequences can be represented in following four ways

1. Graphical Representation.
2. Functional Representation.
3. Tabular Representation.
4. Sequence Representation.

Graphical Representation. Discrete-time signals can be represented by a graph when the signal is defined for every integer value of n for $-\infty<n<\infty$. This is illustrated in Fig. 2.2.

Fig. 2.2 Graphical representation of a discrete-time signal.

Eunctional Representation. Discrete-time signals can be represented functionally as given below

$$
s(n)=\left\{\begin{array}{l}
2, \text { for } n=1,3 \tag{2.3}\\
4, \text { for } n=2 \\
0, \text { elsewhere }
\end{array}\right.
$$

Tabular Representation. Discrete-time signals can also be represented by a table as,

n	$\ldots .$.	-3	-2	-1	0	1	2	3	4	5	$\ldots .$.
$\mathrm{s}(\mathrm{n})$		0	0	0	1	2	1	0	0	0	

Sequence Representation. An infinite-duration $(-\infty \leq n \leq \infty)$ signal with the time as origin $(n=0)$ and indicated by the symbol \uparrow.

$$
\begin{equation*}
s(n)=\{\ldots 0,0,0,1,3,1,0,0\} \tag{2....}
\end{equation*}
$$

2.3.2 Methods of Obtaining a Signal Sequence

There are three methods of obtaining a sequence :

1. To generate a set of numbers and order them into sequence form -Example : $s(n) \risingdotseq n, 0 \leq n \leq N-1$
2. A sequence is generated by some recursion relation

Example : $s(n)=\frac{1}{2} s(n-1)$
with initial condition $s(0)=1$
generates a sequence

$$
\begin{equation*}
\mathrm{s}(\mathrm{n})=\left(-\frac{1}{2}\right)^{\mathrm{n}}, 0 \leq n \leq \infty \tag{2.7}
\end{equation*}
$$

3. A sequence is also obtained by periodic sampling of continuous-time signals. Periodic measurement of continuous-time signals is called periodic sampling.
Discrete-time sequence, $s\left(n T_{s}\right)=\left.s(t)\right|_{t=n T_{s}} ^{\prime}-\infty<\dot{n}^{\prime}<\infty$
where T_{s} is the sampling interval and $s(t)$ is a continuous-time signal.

2.3.3 Some Elementary Discrete-Time Signals

There are some basic signals which play an important role in the study of discrete-time signals and systems.

These signals are given below

1. Unit-Sample (Impulse) Sequence, $\delta(n)$
2. Unit-Step Sequence, $u(n)$
3. Unit-ramp Sequence, $r(n)$
4. Exponential Sequence
5. Sinusoidal Sequence.

Veit-Sample Sequence. Fis. 2.3 shows a unit sample sequence, it is denoted by $\delta(n)$ and is defined as

$$
\delta(n)=\left\{\begin{array}{l}
1, n=0 \tag{2.9}\\
0, n \neq 0
\end{array}\right.
$$

Fig. 2.3 Graphical representation of $\delta(n)$.
Urit-Step Sequence. It is denoted by $u(n)$ and is defined as $\delta(n)$.

$$
u(n)=\left\{\begin{array}{l}
1 ; n \geq 0 \tag{2.10}\\
0, n<0
\end{array}\right.
$$

Fig. 2.4 illustrates the graphical representation of unit-step sequence.

Fig. 2.4 Graphical representation of $u(n)$.
Unir-Ramp Sequence. It is denoted by $\mathrm{r}(n)$ and is defined as

$$
r(n)=\left\{\begin{array}{l}
n, \text { for } n \geq 0 \tag{2.11}\\
0, \text { for } n<0
\end{array}\right.
$$

Fig. 2.5 shows the graphical representation of unit-ramp sequence.

Fig. 2.5 Graphical representation of $r(n)$.
Exponential Sequence. It is defined as

$$
\begin{equation*}
s(n)=(\mathrm{A})^{n} \text { for all values of } n \tag{2.12}
\end{equation*}
$$

If the parameter A is real, then $s(n)$ is a real sequence. Fig. 2.6. illustrates graphical representation of exponential sequenice.

Fig. 2.6 Graphical representation of exponential sequences.
finusoidal Sequences. There are two types of sinusoidal sequences, one is called the sine sequence and the other is called cosine sequence.

Sine sequence is defined as

$$
\begin{equation*}
s(n)=\sin \omega_{0} n, \text { for all } n \tag{2.13}
\end{equation*}
$$

and cosine sequence is defined as

$$
\begin{equation*}
\mathrm{s}(n)=\cos \omega_{0} n, \text { for all } n \tag{2.13}
\end{equation*}
$$

Fig. 2.7 illustrates the graphical representation of cosine type sinusoidal sequence.

Fig. 2.7 Graphical representation of cosine type sinusoidal sequence.

2.4 Relationship Between Step, Ramp and Delta Functions

In this subsection, let us establish relationship between step, ramp and delta f^{\prime} (i) Relation between unit step be written as below unit step and unit ramp functions can be written as below

$$
\frac{\frac{d}{d t} r(t)=u(t)}{\int_{-} u(t) d t=r(t)}
$$

or
(ii) Relation between unit step and delta functions : The relationship beiween the unit step and delta functions can be written as below :
or

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{dt}} \mathrm{u}(\mathrm{t})=\delta(\mathrm{t}) \\
& \int \delta(\mathrm{t}) \mathrm{dt}=\mathrm{u}(\mathrm{t})
\end{aligned}
$$

Hence, on integrating an unit impulse function, we get an unit step function.
(iii) Relation between unit ramp and delta functions: The relationship between unit ramp and delta functions can be written as below :-
or

$$
\begin{aligned}
\mathrm{r}(\mathrm{t}) & =\underbrace{\int \delta(\mathrm{t})} \mathrm{dt} \\
\frac{\mathrm{~d}^{2}}{\mathrm{dt}^{2}} \mathrm{r}(\mathrm{t}) & =\delta(\mathrm{t})
\end{aligned}
$$

Thus, on summarizing points (i), (ii) and (iii), we get

$$
\delta(\mathrm{t}) \xrightarrow{\text { Integrate }} \mathrm{u}(\mathrm{t}) \xrightarrow{\text { Differentiate }} \mathrm{r}(\mathrm{t})
$$

or $\quad \mathrm{r}(\mathrm{t}) \xrightarrow{\text { Differentiate }} \mathrm{u}(\mathrm{t}) \xrightarrow{\text { Differentiate }} \delta(\mathrm{t})$

Exainple 2.1 Prove the following :

(i) $\delta(\mathbf{n})=\mathbf{u}(\mathrm{n})-\mathbf{u}(\mathrm{n}-1)$
(ii) $u(n)=\sum_{k=-\infty}^{n} \delta(k)$
(iii) $u(n)=\sum_{k=0}^{\infty} \delta(n-k)$

Solution : (i) Given : $\quad \delta(n)=u(n)-u(n-1)$
We know that
so that

$$
\begin{aligned}
u(n) & = \begin{cases}1 & \text { for } n \geq 0 \\
0 & \text { for } n<0\end{cases} \\
u(n-1) & = \begin{cases}1 & \text { for } n \geq 1 \\
0 & \text { for } n<1\end{cases}
\end{aligned}
$$

Therefore, we have

$$
u(n)-u(n-1)= \begin{cases}0 & \text { for } n \geq 1 i . c,, n>0 \\ 1 & \text { for } n=0 \\ 0 & \text { for } n<0\end{cases}
$$

Note that the above equation is nothing but $\delta(n)$.
This means that

$$
\begin{aligned}
u(n)-u(n-1)= & \delta(n) \\
& = \begin{cases}1 \text { for } n=0 \\
0 \text { for } n \neq 0\end{cases}
\end{aligned}
$$

Hence Proved.

(ii) Given

$$
u(n)=\sum_{k=-\infty}^{n} \delta(k)
$$

We know that

$$
\sum_{k=-\infty}^{n} \delta(k)=\left\{\begin{array}{l}
0 \text { for } n<0 \\
1 \text { for } n \geq 0
\end{array}\right.
$$

Note that the right hand side of above equation is an unit sample sequence $u(n)$.
Therefore, the given equation is proved.
(iii) Given

$$
u(n)=\sum_{k=0}^{\infty} \delta(n-k)
$$

We know that

$$
\sum_{k=0}^{\infty} \delta(n-k)=\left\{\begin{array}{l}
0 \text { for } n<0 \\
1 \text { for } n \geq 0
\end{array}\right.
$$

Note that the right hand side of above equation is an unit sample sequences $u(n)$. Therefore, the given equation is proved.

2.5. Clakeification of Signale

Ans imvedigntion in sigent procesting is started with a classification of signals involved in the specific appliction. Signals can be clacsified in the following classes :
> Moltichannel and Moltidimensional signals
> Continuors-time and Discrete-time signals

- Analog and Digital signals
- Deterministic and Random signals
- Energy and Power signals
) Periodic and Non-periodic signals.
$>$ Symmetric (even) and anti-symmetric (odd) signals.

2.5. Multichannel and Multidimensional Signals

Maltichannel Signals. Signals which are generated by mutliple sources or multiple sensors are called Multichannel signals. These signals are represented by vector

$$
s(t)=\left[\begin{array}{l}
s_{1}(t) \\
s_{2}(t) \\
s_{3}(t)
\end{array}\right]
$$

Above signal represents a 3-channel signal. In electrocardiography, 3-lead and 12lead electrocardiograph is often used in practice, which results in 3-channel and 12 -channel signals, respectively.
Multidimensional Signal. A signal is called multidimensional signal if it is a function of M independent variables. For example : Speech signal is a one dimensional signal because amplitude of signal depends upon single independent variable, namely, time. TV Picture Signal : A B/W picture signal is an example of 2-dimensional signal because brightness of the signal at each point is a function of two spatial independent variable, namely, x and y. Variables x and y are width and height of the picture element.

A coloured picture signal is an example of 3-dimensional signal because brightness of the signal at each point is a function of three independent variables, namely, x, y and time (t).

2.5.2 Continuous-time and Discrete-time Signals

Continuous-time Signals. A signal that varies continuously with time is called continuoustime signal. These are defined for every value of independent variable, namely, time. For example speech signal and temperature of the room are continuous-time signals. Continuous-time signal is shown in Fig. 2.8.

Fig. 2.8 Continuous-fime signal.
Discrete-time Signal. Discrete-time signals are signals which are defined at discrete times (Fig. 2.9). These are represerted by sequences of numbers. For-example: Rail traffic signal is a discrete-time signal.

Discrete-time signals can be recovered by periodic sampling of continuous-time signals. Fig. 2.9 illustrates the discrete-time signal.'

Fig. 2.9 Discrete-time signal.

2.5.3 Analog and Digital Signals

Analog Signals. Analog signals are signals whose both dependent variable and independent variable(s) are continuous in nature. Analog signals arise when a physical waveform is converted into an electrical signal. This conversion is performed by means of a transducer. For example : Telephone speech signals, TV signals etc., are very common types of analog signal.

Telephone Speech Signals. A telephone message comprises of speech sounds having vowels and consonants. These sounds produce an audio signal. These sound waves are converted into analog electrical signals by means of a transducer (microphone). Transducer is a device which converts non-electrical quantity into electrical signals. Example : Microphone. Continuous-amplitude, continuous-time signals are called analog signals.
DigitatSignals. Digital signals are signais whose both dependent variable and independent variables are discrete in nature. Digital signals comprise of pulses occuring at discrete intervals of time. Telegraph and teleprinter signais are the example of digital signals. Fig.2.10 illustrates a telegraph signal.

(2.10 Telegraph signal (Digital signal).

2.5.4 Deterministic and Random Signals

Deterministic Signals. A deterministic signal is one which -has no uncertainty with respect to its value at any value of independent variable, namely, time. For Example: Rectangular pulse given by Eqn(2.15) is a deterministic signal. Fig. 2.11 and Fig. 2.12 illustrate rectangular pulse and cosine signal respectively, both are the example of deterministic signal.

$$
\begin{aligned}
& \text { The signal which has } \\
& \text { cortalinity about it's } \\
& \text { valuewint anyvalue } \\
& \text { of independent } \\
& \text { variable. } \\
& \text { veg. } 2.11 \text { Rectangular pulse. }
\end{aligned}
$$

Fig. 2.12 Cosine signal.

$$
s(n)= \begin{cases}1, & |\mathrm{n}|<\frac{1}{2} \tag{2.15}\\ 0, & \text { otherwise }\end{cases}
$$

Another example of deterministic Signal is sinusoidal signals such as sine waves and cosine waves as given in Eqn. (2.16)

$$
\begin{equation*}
s(n)=A \operatorname{Cos} \theta n . \quad-\infty<n<\infty \tag{2.16}
\end{equation*}
$$

Random Signal. A random signal is a signal which has some degree of uncertainty with respect to its value at any value of independent variable namely, time. For example Thermal agitation noise in conductors is a random signal.

time (t)

Classification of Discrete Fig. 2.13 Random signal.

2.5.5 Etrergy signals and power signals

For a discrete-time signal $x(n)$ the energy E is defined as

$$
\begin{equation*}
E=\sum_{n=-\infty}^{\infty}|x(n)|^{2} \tag{2.17}
\end{equation*}
$$

The average power of a discrete-time signal $x(n)$ is defined as

$$
\begin{equation*}
P=\lim _{N \rightarrow \infty} \frac{1}{2 N+1} \sum_{n=-N}^{N}|x(n)|^{2} \tag{2.18}
\end{equation*}
$$

The energy signal $\overline{\text { is one which has finite energy and zero average power. }}$
Hence, $x(t)$ is an energy signal, if :

$$
0<\mathrm{E}<\infty \text { and } \mathrm{P}=0
$$

where, E is the energy and P is the power of the signal $x(t)$.
The power signal, is one which has finite average power and infinite energy.
Hence, $x(t)$ is a power signal, if:

$$
0<\mathrm{P}<\infty \text { and } \mathrm{E}=\infty
$$

However, if the signal does not satisfy any of the above two conditions, then it is neither an energy signal nor a power signal.

E.virmple 2.2

Determine the values of power and energy of the following Signals. Find the signals are power, energy or neither energy nor power signals.
(i) $\mathrm{x}(\mathrm{n})=\left(\frac{1}{3}\right)^{\mathrm{n}} \mathrm{u}(\mathrm{n})$
(ii) $x(n)=e^{i\left(\frac{\pi}{2} n+\frac{\pi}{4}\right)}$
(iii) $x(n)=\sin \left(\frac{\pi}{4} n\right)$
(iv) $x(n)=e^{2 \pi}\left(\frac{n}{n}\right.$

Solution:

(i) Given $\mathrm{x}(\mathrm{n})=\left(\frac{1}{3}\right)^{\mathrm{n}} \mathrm{u}(\mathrm{n})$

The energy of the signal

$$
\begin{aligned}
E & =\sum_{n=-\infty}^{\infty}|x(n)|^{2} \\
& =\sum_{n=0}^{\infty}\left[\left(\frac{1}{3}\right)^{n}\right]^{2} \quad \because u(n)=1 \text { for } n \geq 0 \\
& =0 \text { for } n<0
\end{aligned}
$$

$$
=\sum_{n=0}^{\infty}\left(\frac{1}{9}\right)^{n}
$$

$$
1+a+a^{2}+\ldots \infty=\frac{1}{1-a}
$$

$$
=\frac{1}{1-\frac{1}{9}}=\frac{9}{8}
$$

The power $P=\lim _{N \rightarrow \infty} \frac{1}{2 N+1} \sum_{n=0}^{N}\left(\frac{N}{9}\right)^{n / 4}$

$$
\lim _{N \rightarrow \infty} \frac{1_{1}}{2 N+1}\left[\frac{1-\left(\frac{1}{9}\right)^{N+1}}{1-\frac{1}{9}}\right]
$$

$$
\begin{aligned}
& \text { arevida } \\
& 1+x^{2}+u^{2}+\cdots \\
&=\frac{1-x-1}{1-x}
\end{aligned}
$$

$$
=0 \mathrm{k}
$$

The energy is finite and power is zero. Therefore, the signal is energy signal.
(ii) $x(n)=e^{i\left(\frac{\pi}{2}+\frac{\pi}{4}\right)}$

$$
\begin{aligned}
E & =\sum_{n=-\infty}^{\infty}\left|e^{j\left(\frac{\pi}{2} n+\frac{\pi}{4}\right)}\right|^{2} \\
E & =\sum_{N=-\infty}^{\infty} 1=\infty \\
P & =\lim _{N \rightarrow \infty} \frac{1}{2 N+1} \sum_{n=-N}^{N}|x(n)|^{2} \\
& =\left.\lim _{N \rightarrow \infty} \frac{1}{2 N+1} \sum_{n=-N}^{N} e^{j\left(\frac{\pi}{2} n+\frac{\pi}{4}\right)}\right|^{2} \\
& =\sum_{n=-N}^{N} \frac{1}{2 N+1} \sum_{n=-N}^{N} 1 \cdot(-N
\end{aligned}
$$

$$
\because\left|\mathrm{e}^{\mathrm{j}(\omega+\theta)}\right|=1
$$

$$
\sum_{\mathrm{n}=-\mathrm{N} .}^{\mathrm{N}} 1=2 \mathrm{~N}+1
$$

The energy is infinite and power is finite. Therefore, the signal is power signal.
(iii) $x(n)=\sin \left(\frac{\pi}{4} n\right)$

$$
\left.E=\sum_{n=-\infty}^{\infty}\left|\sin ^{2}\left(\frac{\pi}{4} n\right)\right|=\sum_{n=-\infty}^{\infty}\left[\frac{1-\cos \left(\frac{\pi}{2 . n}\right)}{2}\right]^{2}=\infty \quad n=\infty \frac{1}{2}^{\prime}=\infty\right)
$$

$$
P=\lim _{N \rightarrow \infty} \frac{1}{2 N+1} \sum_{n=-\infty}^{N}\left|\sin ^{2}\left(\frac{\pi}{4} n\right)\right|_{\infty}, 0
$$

$$
\left.\sqrt{\frac{1}{2}}\right)^{2}
$$

$$
\dot{E}
$$

The energy is infinite and the power is finite. Therefore, the signal is a power sign
(iv) $x(n)=e^{2 n} u(n)$

$$
\begin{aligned}
E & =\sum_{n=-\infty}^{\infty}|x(n)|^{2}=\sum_{n=0}^{\infty} e^{4 n}=1+e^{4}+e^{8}+\ldots .+\infty=\infty \\
P & =\lim _{N \rightarrow \infty} \frac{1}{2 N+1} \sum_{n=-N}^{N}|x(n)|^{2} \\
& =\lim _{N \rightarrow \infty} \frac{1}{2 N+1}\left[\frac{e^{4(N+1)-1}}{e^{4}-1}\right] \\
& =\infty
\end{aligned}
$$

The signal is neither power nor energy signal.

2.5.6 Periodic Signals and Aperiodic Signals

A signal is periodic with period N if and only if

$$
\begin{equation*}
x(n+N)=x(n) \text { for all } n . \tag{2.19}
\end{equation*}
$$

The smallest value of N for which Eqn.(2.19) holds is known as fundamental period. If Eqn.(2.19) does not satisfy even for one value of n then the discrete-time signal is aperiodic.

A discrete-time sinusoidal signal is given by

$$
\begin{equation*}
x(n)=A \sin \left(\omega_{0} n+\theta\right) \tag{2.20}
\end{equation*}
$$

The units of ω_{0} and θ are radians.
The signal $x(n)$ is periodic if and only if

$$
x(n)=x(n+N) \text { for all } n .
$$

From Eqn.(2.20) we can obtain

$$
\begin{align*}
x(n+N) & =A \sin \left[\omega_{0}(n+N)+\theta\right] . \\
& =A \sin \left[\omega_{0} n+\omega_{0} N+\theta\right] \tag{2.21}
\end{align*}
$$

Eq. (2.20) and Eq. (2.21) are equal if
That is, there must an integer m such that

$$
\begin{align*}
& \omega_{0} \mathrm{~N}=2 \pi \mathrm{~m} \text { or } \\
& \omega_{0}=2 \pi\left[\frac{\mathrm{~m}}{\mathrm{~N}}\right] \tag{2.22}
\end{align*}
$$

Therefore, the discrete time signal is periodic if the fundamental frequency ω_{0} is rational multiple of 2π otherwise the discrete-time signal is aperiodic.

The sum of two periodic signals $x_{1}(n)$ and $x_{2}(n)$ with period N_{1} and N_{2}, may or may
not be periodic depending on the relationship between N_{1} and N_{2}. If the sum to be periodic, the ratio of time period $\sqrt[\frac{N_{1}}{N_{2}}]{\text { must be a rational number or ratio of two integers. Otherwise }}$ the sum is not periodic.

Exrimple 2:3

Determine whether or not each of the following signals is periodic. If a signal is periodic, specify its fundamental period.
(i)
$x(n)=e^{j 6 \pi n}$
(ii) $x(n)=e^{j \frac{3}{5}\left(n+\frac{1}{2}\right)}$
(iii) $x(n)=\cos \frac{2 \pi}{3} n$
(iv) $x(n)=\cos \frac{\pi}{3} n+\cos \frac{3 \pi}{4} n$

Solution

(i) $\quad x(n)=e^{j 6 \pi n}$
$\omega_{0}=6$. The fundamental frequency is multiple of π. Therefore, the signal is periodic.
From Eq. (2.22)

$$
\begin{aligned}
\mathrm{N} & =2 \pi\left[\frac{\mathrm{~m}}{\omega_{0}}\right] \\
& =2 \pi\left[\frac{\mathrm{~m}}{6 \pi}\right]
\end{aligned}
$$

The minimum value of m for which N is integer is 3 .

$$
\mathrm{N}=2 \pi\left[\frac{3}{6 \pi}\right]=1
$$

Therefore, the fundamental period $=1$.
(ii) $x(n)=e^{j \frac{3}{5}\left(n+\frac{1}{2}\right)}$
$\omega_{0}=\frac{3}{5}$, which is not a multiple of Therefore, the signal is aperiodic.
(iii) $\quad x(n)=\cos \left(\frac{2 \pi}{3}\right) n$
$\omega_{0}=\frac{2 \pi}{3}$

The signal is periodic.
The fundamental period

$$
\mathrm{N}=2 \pi\left[\frac{\mathrm{~m}}{\frac{2 \pi}{3}}\right]=3 \mathrm{~m}
$$

for

$$
\begin{aligned}
& \mathrm{m}=1 \\
& \mathrm{~N}=3
\end{aligned}
$$

Therefore, the fundamental period of the signal is 3 .

$$
\text { (iv) } x(n)=\cos \left(\frac{\pi}{3} n\right)+\cos \left(\frac{3 \pi}{4}\right) n=x_{1}(n)+x_{2}(n)
$$

The fundamental period of the signal $\cos \left(\frac{3 \pi}{4}\right) \mathrm{n}$

$$
N_{1}=2 \pi\left[\frac{\mathrm{~m}}{\pi / \mathrm{h}}\right]=6 \quad(\text { for } \mathrm{m}=1)
$$

Similarly,

$$
\begin{aligned}
& \mathrm{N}_{2}=2 \pi\left[\frac{\mathrm{~m}}{\frac{3 \pi}{4}}\right]=8 \\
& \text { (for } m=3 \text {) } \\
& \begin{aligned}
\frac{N_{1}}{N_{2}}=\frac{6}{8}=\frac{3}{4} \quad N & =\operatorname{LCM}(N, N / 2) \\
& =24
\end{aligned} \\
& \Rightarrow \quad \mathrm{~N}=4 \mathrm{~N}_{1}=3 \mathrm{~N}_{2}=24 \\
& \mathrm{~N}=24 \text {. }
\end{aligned}
$$

2.5.7 Symmetric (even) and Antisymmetric (odd) signals

A discrete-time signal $x(n)$ is said to be symmetric (even) signal if it satisfies the condition.

$$
\begin{equation*}
x(-n) \simeq x(n) \text { for all } n . \tag{2.23}
\end{equation*}
$$

Example: $\mathrm{x}(\mathrm{n})=\cos \omega \mathrm{n}$
The signal is said to be an odd signal if it satisfies the condition.

$$
\begin{equation*}
x(-n)=-x(n) \text { for all } n \tag{2.24}
\end{equation*}
$$

Example: A sin $\omega \mathrm{n}$
If $x(n)$ is odd then $x(0)=0$
A signal $x(n)$ can be expressed as sum of even and odd components. That is

$$
\begin{equation*}
x(n)=x_{e}(n)+x_{0}(n) \tag{2.25}
\end{equation*}
$$

where $x_{e}(n)$ is even component of the signal and $x_{0}(n)$ is odd component of the signal.
Replace n by $-n$ in Eq.(2.25) we get

$$
\begin{equation*}
x(-n)=x_{e}(-n)+x_{0}(-n)=x e(n)-x_{0}(n) \tag{2.26}
\end{equation*}
$$

Adding Eq. (2.25) and Eq. (2.26) yields

$$
\begin{align*}
& 2 x_{\mathrm{e}}(\mathrm{n})=x(\mathrm{n})+x(-n) \\
& \Rightarrow x_{\mathrm{e}}(\mathrm{n})=\frac{1}{2}[x(n)+x(-n)] \tag{2.27}
\end{align*}
$$

Similarly, we can get

$$
\begin{equation*}
\left[x_{0}(n)=\frac{1}{2}[x(n)-x(-n)]\right] \tag{2.27a}
\end{equation*}
$$

(a)

(b)

Fig 2.14 (a) A symmetric Signal (b) An antisymmetric Signal
A signal $\mathrm{x}(\mathrm{n})$ is said to be Causal if its value is zero for $\mathrm{n}<0$. Otherwise the signal is noncausal.
Examples for causal signals :

$$
x_{1}(n)=a^{n} u(n)
$$

$$
\begin{aligned}
& x_{2}(n)=\{1,2,-3,-1,2\} \\
& x_{1}(n)=a^{n} u(-n+1) \\
& x_{2}(n)=\{1,-2,1,4,3\}
\end{aligned}
$$

Example 2.4

A discrete-time system is characterized the following difference equation :

$$
y(n)-x(n)+e^{\alpha} y(n-1)
$$

Check this system for BIBO stability.
Solution : The given expression is

$$
y(n)=x(n)+e \alpha y(n-1)
$$

If $x(n)=S(n)$, then $y(n)=h(n)$.
Thus, the impulse response of the system will be

$$
h(n)=8(n)+e \alpha . h(n-1)
$$

Now,
when $\mathrm{n}=0, \mathrm{~h}(0)=\delta(0)+\mathrm{e} \alpha . \mathrm{h}(-1)=1$
when $\mathrm{n}=1, \mathrm{~h}(\mathrm{l})=\delta(1)+\mathrm{e} \alpha . \mathrm{h}(0)=\mathrm{e} \alpha$
when $\mathrm{n}=2, \mathrm{~h}(2)=\delta(2)+\mathrm{e} \alpha . \mathrm{h}(\mathrm{l})=\mathrm{e}^{2} \alpha$
Similarly, we have

$$
\mathrm{h}(\mathrm{n})=\mathrm{e}^{\mathrm{n}} \alpha .
$$

We know that to check the BIBO stability, the necessary and sufficient condition is given by

$$
\sum_{k=0}^{\infty}|h(k)|<\infty
$$

Here, we have

$$
\sum_{k=0}^{\infty}|h(k)|=|1|+|e \alpha|+\left|e^{2} \alpha\right|+\ldots .+=\sum_{k=0}^{\infty}\left|\mathrm{e}^{k a}\right|=\left|\frac{1}{1-\mathrm{e}^{\alpha}}\right|
$$

Therefore, the given system is BIBO stable only when e $\alpha><1$ or $\alpha<0$.

Example 2.5

Check whether the following systems are BIBO stable or not :
(i) $y(n)=a x^{2}(n)$
(ii) $\mathrm{y}(\mathrm{n})=\mathrm{ax}(\mathrm{n})+b$
(iii) $y(n)=e^{-x(n)}$

Solution: (i) The given expression is

If

$$
y(n)=\mathrm{nx}^{2}(\mathrm{n})
$$

$$
x(n)=\delta(n)
$$

then

$$
y(n)=h(n) .
$$

Thus, the impulse response is given by

$$
h(n)=a \delta^{2}(n)
$$

Now,
when $\mathrm{n}=0, \mathrm{~h}(0)=\mathrm{a} \delta^{2}(0)=\mathrm{a}$
when $\mathrm{n}=1, \mathrm{~h}(\mathrm{l})=\mathrm{a} \delta^{2}(\mathrm{l})=0$
In general, we have

$$
h(n)=\left\{\begin{array}{l}
a \text { when } n=0 \\
0 \text { when } n \neq 0
\end{array}\right.
$$

We know that the necessary and sufficient condition for BIBO stability is expressed as

$$
\sum_{k=0}^{\infty}|h(k)|<\infty
$$

\qquad
expressed as

$$
\sum_{k=0}^{\infty}|h(k)|<\infty
$$

Therefore,
or $\quad \sum_{k=0}^{\infty}|h(k)|=|a+b|+|b|+|b|+\ldots . .+|b|+\ldots$

$$
\sum_{k=0}^{\infty}|h(k)|=|h(0)|+|h(1)|+|h(2)|+\ldots \ldots+|h(k)|+\ldots
$$

From above expression, it is obvious that this series never converges since the ratio between the successive terms is one.

Therefore the given system is BIBO unstable.
(iii) The given system is

If

$$
y(n)=e^{-x(n)}
$$

then

$$
\begin{aligned}
& x(n)=\delta(n) \\
& y(n)=h(n)
\end{aligned}
$$

Thus, the impulse response is

$$
h(n)=e^{-\delta(n)}
$$

Now,
when
when

$$
\begin{aligned}
& \mathrm{n}=0, \mathrm{~h}(0)=\mathrm{e}^{-} \delta^{(0)}=\mathrm{e}^{-1} \\
& \mathrm{n}=1, \mathrm{~h}(1)=\mathrm{e}^{-\delta^{(1)}}=\mathrm{e}^{0}=1
\end{aligned}
$$

In general, we have

$$
h(n)=\left\{\begin{array}{l}
\mathrm{e}^{-1} \text { when } \mathrm{n}=0 \\
1 \quad \text { when } \mathrm{n} \neq 0
\end{array}\right.
$$

We know that the necessary and sufficient condition for BIBO stability is expressed

$$
\sum_{k=0}^{\infty}|h(k)|<\infty
$$

Therefore, we have

$$
\begin{aligned}
\sum_{k=0}^{\infty}|\mathrm{h}(\mathrm{k})| & =|\mathrm{h}(0)|+|\mathrm{h}(1)|+|\mathrm{h}(2)|+\ldots \ldots+|\mathrm{h}(\mathrm{k})|+\ldots \\
& =\mathrm{e}^{-1}+1+1+1+\ldots .+1 \ldots
\end{aligned}
$$

From above equation, it is clear that the given system never converges, therefore, it is a BIBO unstable system.

E.vatimple 2.6

Check the BIBO stability for the impulse response of a discrete-time system given by

$$
h(n)=a^{n} \cdot u(n)
$$

Solution : Given that $h(n)=a^{n}, u(n)$
This mean that $h(k)=a^{k}, u(k)$

We have

$$
\sum_{k=0}^{\infty}|h(k)|=\left|a^{k}\right|=\left|a^{0}\right|+\left|a^{1}\right|+\left|a^{2}\right|+\ldots .+\left|a^{k}\right|+\ldots=\left|\frac{1}{1-a}\right|
$$

From above, it is obvious that the given system is stable if a < 1 , i.e., a lies inside the
unit circle of the complex plane. Ans.

Example 2.7

Verify whether the following systems are BIBO stable or not
(i)

$$
h(t)= \begin{cases}\frac{1}{R C} e^{-t / R C} & \text { for } t \geq 0 \\ 0 & \text { for } t<0\end{cases}
$$

(ii) $h(t)= \begin{cases}\frac{1}{\sqrt{\mathrm{LC}}} \sin \left(-\frac{t}{\sqrt{\mathrm{LC}}}\right) & \text { for } t \geq 0 \\ 0 & \text { for } t<0\end{cases}$

Solution: (i) Given that $\mathrm{h}(\mathrm{t})=\frac{1}{\mathrm{RC}} \mathrm{e}^{-\mathrm{t} / \mathrm{RC}}$
This is a causal system because we observe that

$$
h(f)=0 \text { for } t<0 \text {. (Given) }
$$

For stability let us evaluate,

$$
\begin{aligned}
& \int_{-\infty}^{\infty} h(t) d t=\int_{-\infty}^{\infty} \frac{1}{R C} e^{-t / R C} d t \text { for } t \geq 0 \\
& \int_{-\infty}^{\infty} h(t) d t=\int_{0}^{\infty} \frac{1}{R C} e^{-t / R C} d t \\
& \int_{-\infty}^{\infty} h(t) d t=\frac{1}{R C}\left(-\frac{1}{1 / R C}\right)\left[e^{-t / R C}\right]_{0}^{\infty}=1<\infty
\end{aligned}
$$

Hence this system is stable.
(ii)

$$
h(t)=\frac{1}{\sqrt{\mathrm{LC}}} \sin \left(-\frac{1}{\sqrt{\mathrm{LC}}}\right)
$$

This is causal system since

$$
\mathrm{h}(\mathrm{t})=0 \text { for } \mathrm{t}<0 \text { (Given) }
$$

For stability let us evaluate,

$$
\begin{aligned}
\int_{-\infty}^{\infty} h(t) d t & =\int_{-\infty}^{\infty} \frac{1}{\sqrt{\text { LC }}} \sin \left(-\frac{1}{\sqrt{\mathrm{LC}}}\right) d t \text { for } t \geq 0 \\
& =\int_{-\infty}^{\infty} \frac{1}{\sqrt{\text { LC }}} \sin \left(-\frac{1}{\sqrt{\mathrm{LC}}}\right) d t
\end{aligned}
$$

Let $\frac{1}{\sqrt{\text { LC }}}=p$. therefore $\mathrm{dt}=\sqrt{\mathrm{LC}} \mathrm{dp}$.
Thus above equation becomes,

$$
\begin{aligned}
\int_{-\infty}^{\infty} \mathrm{h}(\mathrm{t}) \mathrm{dt} & =\int_{-\infty}^{\infty} \frac{1}{\sqrt{\mathrm{LC}}} \sin (-\mathrm{p}) \sqrt{\mathrm{LC}} \mathrm{dp} \\
& \int_{0}^{\infty} \sin (\mathrm{p})=-[-\cos \mathrm{p}]_{0}^{\infty}=\cos (\infty)-1
\end{aligned}
$$

The value of cosine function is always from -1 to 1 .
Here, since $\int_{-\infty}^{\infty} h(t) d t<\infty$, therefore, this is a stable system.

2.6 Operation on Signals

Signal processing is a group of basic operations applied to an input signal resulting in another signal as the output. The mathematical transformation from one signal to another is represented as

$$
\begin{equation*}
y(n)=T[x(n)] \tag{2.28}
\end{equation*}
$$

The basic set of operations are

1. Shifting 2. Time reversal 3. Time scaling 4. Scalar multiplication 5. Signal multiplier 6 .
Signal addition

2.6.1 Shifting

The shift operation takes the input sequence and shift the values by an \& integer increment of the independent variable. The shifting may delays or W advances the sequence in time. Mathematically this can be represented as

$$
\begin{equation*}
y(n)=x(n-k) \tag{2.29}
\end{equation*}
$$

where $x(n)$ is the input and $y(n)$ is the output
If k is positive the shifting delays the sequence. If k is negative the shifting advances the sequence.

Fig. 2.15 Shift operation on signal
(a) Discrete time signal (b) delayed version (c) advanced version

A signal $x(n)$ is shown in Fig. 2.15a. The signal $x(n-3)$ is obtained by shifting $x(n)$ right by 3 units of time. The result is shown in Fig. 2.15b. On the other hand, the signal $x(n+2)$ is obtained by shifting $x(n)$ left by two units of time (see Fig. 2.15c).

2.6.2 Folding or Time Reversal

This operation is an another useful scheme to develop a new sequence. In this operation independent variable n is replaced by -n . For example

$$
\begin{equation*}
y(n)=\operatorname{FD}[x(n)]=x(-n) \tag{29}
\end{equation*}
$$

The figure 2.16 shows a graphical representation of folding operation.

(a)

(b)

Fig. 2.16 Graphical representation of folding operation
In this case,

$$
x(n)=\{1,1,3,2,3,2\} \quad \text { and } \quad x(-n)=\{2,3,2, \underset{\uparrow}{\uparrow}, 1,1\}
$$

2.6.3 Tîme Scaling

This is accomplished by replacing n by λn in the sequence $x(n)$.
Let $\mathrm{x}(\mathrm{n})$ is a sequence shown in Fig. 2.17a.
If $\lambda=2$ we get a new sequence

$$
y(n)=x(2 n)
$$

we can plot the sequence $y(n)$ by substituting different values for n.
For

$$
n=-1 ; y(-n)=x(-2)=3
$$

Similarly

$$
\begin{aligned}
& y(0)=x(0)=5 \\
& y(1)=x(2)=3 \\
& y(2)=x(4)=1
\end{aligned}
$$

so on.
From the above result we can conclude that, to plot $y(n)$ we have to skip the oddnumbered samples in $\mathrm{x}(\mathrm{n})$ and retain even-numbered samples. The resulting sequence is shown in Fig. 2.17b.

The original sequence $x(n)$ is obtained by sampling a continuous signal $x(t)$. The signal $\mathrm{x}(2 \mathrm{n})$ is obtained by reducing the sampling rate on the continuous-time signal by a factor of 2 . This process of reducing sampling rate is often referred as down sampling or decimation.

Fig. 2.17 Graphical Representation of time scaling

2.6.4 Scalar Multiplication or Amplitude Scaling

A scalar multiplier is shown in the Fig. 2.18. Here the signal $x(n)$ is multiplied by a scalefactor A.

Fig. 2.18 A scale Multiplier

For example if $x(n)=\{1,2,1,-1\}$ and $A=3$
Then the signal $A x(n)=\{3,6,3,-3\}$

2.6.5 Signal Multiplier

Fig. 2.19 illustrates the multiplication of two signal sequences to form another

Fig. 2.19 A signal multiplicr

For example, if $\mathrm{x}_{1}(\mathrm{n})=\{-1,2,-3,-2\}$ and

$$
x_{2}(n)=\{1,-1,-2,1\}
$$

Then, $x_{1}(n), x_{2}(n)=\{-1,-2,6,-2\}$

2.6.6 Addition Operation

Two signals can be added by using an adder shown as in the Fig. 2.20.

Fig. 2.20 An adder
For example, if $x_{1}(n)=\{1,2,3,4\}$

$$
x_{2}(n)=\{4,3,2,4\}
$$

Then, $\mathrm{x}_{1}(\mathrm{n})+\mathrm{x}_{2}(\mathrm{n})=\{5,5,5,8\}$

2.7 Discrete-Time System

A discrete-time system is a device or algorithm that operates on a discrete-time input signal $\mathrm{x}(\mathrm{n})$, according to some well-defined rule, to produce another discrete-time signal $y(n)$ called the output signal. The relationship between $x(n)$ and $y(n)$ is

$$
y(n)=T[x(n)]
$$

Fig. 2.21 Discrete time system

2.8 Classification of discrete-time systems

Discrete-time systems are classified according to their general properties and characteristics. They are
(1) Static and dynamic systems,
(2) Time-variant and time-invariant systems.
(3) Causal and non-causal systems,
(4) Linear and non-linear systems.
(5) FIR and IIR systems.
(6) Stable and unstable systems.

2.8.1 Static and Dynamic Systems

A discrete-time system is called static or memory less if its output at any instant n depends on the input samples at the same time, but not on past or future samples of the input. In any other case, the system is said to be dynamic or to have memory.
The systems described by the following equations

$$
\begin{aligned}
& y(n)=a x(n) \\
& y(n)=a x^{2}(n)
\end{aligned}
$$

are both static as they won't require memory. On the other hand, the systems described by the following equations

$$
\begin{aligned}
& y(n)=x(n-1)+x(n-2) \\
& y(n)=x(n)+x(n-1)
\end{aligned}
$$

are dynamic systems as they require finite memory.

2.8.2 Time-Variant and Time-invariant systems

A, system is called time-invariant if its input-output characteristics do not change with time.

To test if any given system is time-invariant, first apply an arbitrary sequence $x(n)$ and find $y(n)$. Now delay the input sequence by k samples and find output sequence, denote it as

$$
y(n, k)=T[x-k)]
$$

Delay the output sequence by k samples, denote it as $y(n-k)$. If

$$
y(n, k)=y(n-k) \text { Time invariant }
$$

for all possible values of k, the system is time-invariant on the otherhand, if the output.

$$
y(n, k) \neq y(n-k) \text { Time variant }
$$

even for one value of k, the system is time-variant.

Exumple 2 s

\checkmark Determine if the following systems are time-invariant or time-variant.
(i) $y(n)=x(n) \sin \omega_{0} n$
(ii) $\mathrm{y}(\mathrm{n})=\underset{\varsigma}{x}(-\mathrm{n})$

Solution:

L(i) Given $y(n, k)=x(n-k) \sin \omega_{0} n \quad y(n, k)=[[a(n-k)]$
If we delay the output by K unit in time then

$$
y(n-k)=x(n-k) \sin \omega_{0}(n-k)
$$

Since $y(n, k) \neq y(n-k)$ the system is time variant.
(ii) If the input is delayed by k units in time and applied to the system we have

$$
y(n, k)=T[x(n-k)]=x(-n-k)
$$

\qquad
If the output is delayed by k samples
Here

$$
y(n-k)=x[-(n-k)]=x(-n+k)
$$

$$
y(n, k) \neq y(n-k)
$$

so, the system is time-variant.

2.8.3 Causal and Non-Causal Systems

A system is said to be causal if the output of the system at any time n depends only on mathematically as

$$
y(n)=F[x(n), x(n-1) x(n-2)]
$$

If a system depends not only on present and past inputs but also on future inputs then it is said to be a non-causal system.

Eximple 2.9

Determine if the system described by the following equations are
causal or non-causal.
(i) $y(n)=x(n)+\frac{1}{x(n-1)}$
(ii) $y(n)=x\left(n^{2}\right)$

Solution
(i) Given $y(n)=\underset{x(n)}{x} \frac{1}{x(n-1)}$

For $\mathrm{n}=-1$

$$
y(-1)=x(-1)+\frac{1}{x(-2)}
$$

For $\mathrm{n}=0$

$$
y(0)=x(0)+\frac{1}{x(-1)}
$$

For $n=1$

$$
\underset{\substack{1}}{v(i)=x(1)+\frac{1}{x(0)}+x(2)}+x
$$

For all the values of n the output depends on present and past inputs. Therefore, the system is causal.
(ii) $\mathrm{y}(\mathrm{n})=\mathrm{x}\left(\mathrm{n}^{2}\right)$

For $\mathrm{n}=-1$

$$
y(-1)=x(1)
$$

For $\mathrm{n}=0$

$$
y(0)=x(0)
$$

For $\mathrm{n}=1$

$$
y(1)=x(1)
$$

For negative values of n , the system depends on future inputs. So, the system is noncausal.

2.8.4 Etnear and Non-Linear Systems

A system that satisfies the superposition principle is said to be a linear system, superposition prifciple states that the response of the system to a weighted of signals be equal to the corresponding weighted sum of the outputs of system to each of the individual input signals.

A system is linear if and only if

$$
T\left[a_{1} x_{1}(n)+a_{2} x_{2}(n) a_{1} x_{2}(n)\right]+a_{2} T\left[x_{2}(n)\right]
$$

$$
\begin{array}{r}
=a_{1} \pi\left[x_{1}(n)\right]+a_{2} \\
T\left[x_{2}(n)\right]
\end{array}
$$

A relaxed system that does not satisfy the superposition principle is called non-linear.

Example 2.10

Determine if the system described by the following input-output equations are linear or non-linear.
(i) $y(n)=x(n)+\frac{1}{x(n-1)}$
(ii) $y(n)=x^{2}(n)$
(iii) $y(n)=x(n)+u(n+1)$

Solution :

en LH S Side
(i) Given $\mathrm{y}(\mathrm{n})=\mathrm{x}(\mathrm{n})+\frac{1}{\mathrm{x}(\mathrm{n}-1)}$

For two input sequences $\mathrm{x}_{1}(\mathrm{n})$ and $\mathrm{x}_{2}(\mathrm{n})$ the corresponding outputs are

$$
\begin{equation*}
y_{1}(n)=T\left[x_{1}(n)\right]=x_{1}(n)+\frac{1}{x_{1}(n-1)} \quad x_{1}(n) \quad x_{l}(h) \tag{h}
\end{equation*}
$$

$$
y_{2}(n)=T\left[x_{2}(n)\right]=x_{2}(n)+\frac{1}{x_{2}(n-1)}
$$

The output due to weighted sum 01 inputs is

$$
\begin{align*}
y_{3}(n) & =T\left[a_{1} x_{1}(n)+a_{2} x_{2}(n)\right] \\
& =a_{1} x_{1}(n)+a_{2} x_{2}(n)+\frac{1}{a_{1} x_{1}(n-1)+a_{2} x_{2}(n-1)}
\end{align*}
$$

on the other hand, the linear combination of the two outputs is

$$
\begin{equation*}
a_{1} y_{1}(n)+a_{2} y_{2}(n)=a_{1} x_{1}(n)+\frac{a_{1}}{x_{1}(n-1)}+a_{2} x_{2}(n)+\frac{a_{2}}{x_{2}(n-1)} \tag{2.31}
\end{equation*}
$$

Eq. (2.30) and Eq. (2.31) are not equal, superposition principle is not satisfied. S_{r} the system is non-linear,
(ii) $y(n)=x^{2}(n)$

The outputs due to the signals $x_{1}(n)$ and $x_{2}(n)$ are

$$
\begin{aligned}
& y_{1}(n)=T\left[x_{1}(n)\right]=x_{1}^{2}(n) \\
& \left.y_{2}(n)=T x_{2}(n)\right]=x_{2}^{2}(n)
\end{aligned}
$$

The weighted sum of outputs is

$$
\begin{equation*}
a_{1} T\left[x_{1}(n)\right]+a_{2} T\left[x_{2}(n)\right]=a_{1} x_{1}^{2}(n)+a_{2} x_{2}^{2}(n) \tag{2.32}
\end{equation*}
$$

The output due to weighted sum of inputs is

$$
\begin{equation*}
\left.y_{3}(n)=T\left[a_{1} x_{1}(n)+a_{2} x_{2}(n)\right]=\left[a_{1} x_{1} n\right)+a_{2} x_{2}(n)\right] \tag{2.33}
\end{equation*}
$$

Eq. (2.32) and Eq. (2.33) are not equal, superposition principle is not satisfied. So, the system is non-linear.
(iii) $y(n)=x(n)+u(n+1)$

Consider

$$
\begin{aligned}
& y_{1}(\mathrm{n})=\mathrm{x}_{1}(\mathrm{n})+\mathrm{u}(\mathrm{n}+1) \\
& \mathrm{y}_{2}(\mathrm{n})=\mathrm{x}_{2}(\mathrm{n})+\mathrm{u}(\mathrm{n}+1)
\end{aligned}
$$

linear combination of the two input sequences results in the output

$$
\begin{align*}
y_{3}(n)= & T\left[a x_{1}(n)+b x_{2}(n)\right] \\
& =\left[a x_{1}(n)+b x_{2}(n)\right]+u(n+1) \tag{2.34}
\end{align*}
$$

Finally the linear combination of two outputs yields

$$
\begin{align*}
& a y_{1}(n)+b y_{2}(n)=a x_{1}(n)+b y(n+1)+b x_{2}(n)+b u(n+1) \tag{2.35}\\
& \text { Eqn. }(2.34) \text { and }(2.35) \text { is }
\end{align*}
$$

Since Eqn. (2.34) and (2.35) is not same, so the system is nonlinear.

2.8.5 EIR and IIR Systems

Linear time-invariant systems can be classified according to the type of impulse response. If the impulse response sequence is of finite duration, the system is called a finite impulseresponse (FIR) system. On the otherhand, an infinite impulse response (IIR) system has an impulse response that is of infinite duration.

An example of a FIR system is described by

$$
h(n)=\left\{\begin{array}{cc}
-1 & n=1,2 \\
1 & n=14 \\
0 & \text { otherwise }
\end{array}\right.
$$

An example of an IIR system is described by

$$
h(n)=n u(n)
$$

2.8.6 Stable and unstable systems

(An LTI system is stable if it produces a bounded output sequence for every bounded input sequence. If, for some bounded input sequence $x(n)$, the output is unbounded (infinite), the system is classified as unstable. Let $x(n)$ be a bounded input sequence, $h(n)$ be the impulse response of the system and $y(n)$ be the output sequence. Taking the magnitude of the output

$$
\text { we have }|y(n)|=\left|\sum_{k=-\infty}^{\infty} h(k) x(n-k)\right|
$$

We know that the magnitude of the sum of terms is less than or equal to the sum of the magnitudes, hence

$$
|y(n)| \leq \sum_{k=-\infty}^{\infty}|h(k)| \cdot|x(n-k)|
$$

Let the bounded value of the input is equal to M, the Eqn. can be written as

$$
|\mathrm{y}(\mathrm{n})| \leq \mathrm{M} \sum_{\mathrm{k}=-\infty}^{\infty} \mathrm{h}(\mathrm{k})
$$

The above condition will be satisfied when

$$
\sum_{k=-\infty}^{\infty}|h(k)|<\infty
$$

So, the necessary and sufficient condition for stability is

$$
\text { Stability condition } \sum_{n=-\infty .}^{\infty}|h(n)|<M<\infty
$$

Example 2.11

Test the stability of the system whose impulse response

$$
h(n)=\left(\frac{1}{2}\right)^{n} u(n)
$$

Solution :

The necessary and sufficient condition for stability is $\sum_{n=-\infty}^{\infty}|h(n)|<\infty$

$$
\begin{aligned}
& \text { Given } h(n)=(1 / 2)^{n} u(n) \\
& \qquad \begin{aligned}
\sum_{n=-\infty}^{\infty}|h(n)| & =\sum_{n=-\infty}^{\infty}\left|(1 / 2)^{n} u(n)\right| \\
& =\sum_{n=0}^{\infty}(1 / 2)^{n} \\
& =1+1 / 2+1 / 2^{2} \ldots \infty, \infty \quad\left(\because 1+a+a^{2} \ldots \infty \doteq \frac{1}{1-a}\right)
\end{aligned}
\end{aligned}
$$

$$
=\frac{1}{1 _1 / 2}=2<\infty
$$

Hende the system is stable.
presentation of an Arbitrary Sequence
Any arbitrary sequence $x(n)$ can be represented in terms of delayed and scaled impulse sequence $\delta(n)$. Let $x(n)$ is an infinite sequence as shown in Fig. 2.22a.

The sample $x(0)$ can be obtained by multiplying $x(0)$, the magnitude, with unit impulse $\delta(\mathrm{n})$ as shown in Fig. 2.22c.

$$
\text { i.e., } x(0) \delta(n)=\left\{\begin{array}{cc}
x(-1) & \text { for } n=-1 \\
0 & \text { for } n \neq-1
\end{array}\right.
$$

Similarly, the sample $x(-1)$ can be obtained by multiplying $x(-1)$ the magnitude, with one sample advanced unit impulse $\delta(n+1)$ as shown in Fig. 2.22d.

(a)

$$
\text { i.e, } x(-1) S(n+1)=\left\{\begin{array}{cc}
x(-1) & \text { for } n=-1 \\
0 & \text { for } n \neq-1
\end{array}\right.
$$

In the same way

$$
\begin{aligned}
& x(-2) \delta(n+2)=\left\{\begin{array}{cc}
x(-2) & \text { for } n=-2 \\
0 & \text { for } n \neq-2
\end{array}\right. \\
& x(1) \delta(n-1)=\left\{\begin{array}{cc}
x(1) & \text { for } n=1 \\
0 & \text { for } n \neq 1
\end{array}\right. \\
& x(2) \delta(n-2)=\left\{\begin{array}{cc}
x(2) & \text { for } n=2 \\
0 & \text { for } n \neq 2
\end{array}\right.
\end{aligned}
$$

The sum of the five sequences in the Fig. 2.22a

$$
\begin{align*}
& x(-2) \delta(n+2)+x(-1) \delta(n+1) \\
& +x(0) \delta(n)+x(1) \delta(n-1)+x(2) \delta(n-2) \\
& \text { equal } x(n) \text { for }-2 \leq n \leq 2 \text {. In general } \\
& \text { we can write } x(n) \text { for }-<\infty \leq n \leq \infty \text { as } \\
& x(n)=\ldots x(-3) \delta(n+3)+x(-2) \delta(n+2) \\
& \quad+x(-1) \delta(n+1)+x(0) \delta(n) \\
& \quad+x(3) \delta(n-3)+\ldots
\end{align*}+
$$

where $\delta(n-k)$ is unity for $n=k$ and zero for all other terms.

Fig. 2.22. Representationof a sequence as a sum of delayed impulses

2.10 Impulse Response and Convolution Sum

A discrete-time system performs an operation on an input signal based on a predefined criteria to produce a modified output signal. The input signal $x(n)$ is the system excitation, and $y(n)$ is the system response. This transform operation is shown in Fig. 2.23.

Fig. 2.23. A Discrete - time system representation
If the input to the system is a unit impulse i.e., $x(n)=\delta(n)$ then the output of the system is known as impulse response denoted by $h(n)$ where

$$
\begin{equation*}
(\mathrm{n})=T[\delta(\mathrm{n})] \tag{2.37}
\end{equation*}
$$

We know that any arbitrary sequence $\mathrm{x}(\mathrm{n})$ can be represented as a weighted sum $_{0 \text { of }}$ discrete impulses (Eq. 2.36). Now the system response is given by

$$
\begin{equation*}
y(n)=T[x(n)]=T\left[\sum_{k=-\infty}^{\infty} x(k) \delta(n-k)\right] \tag{2.38}
\end{equation*}
$$

For a lineat system Eq. (2.38) reduces to

The response to the shifted impulse sequence can be denoted by $h(n, k)$ is defined as

$$
\begin{equation*}
h(n, k)=T)[\delta(n-k)] \tag{2.40}
\end{equation*}
$$

For a time-invariant system $h(n, k)=h(n-k)$
Substituting Eq. (2.41) in Eq. (2.40) we obtain

$$
\begin{equation*}
T[\delta(n-k)]=h(n-k) \tag{2.41}
\end{equation*}
$$

Substituting Eq. (2.42) in Eq. (2.39) we have

$$
\begin{equation*}
y(n)=\sum_{k=-\infty}^{\infty} x(k) h(n-k) \tag{2.43}
\end{equation*}
$$

For a linear time-invariant system if the input sequence $x(n)$ and impulse response $h(n)$ is given, we can find the output $y(n)$ by using the equation

$$
\begin{equation*}
y(n)=\sum_{k=-\infty}^{\infty} x(k) h(n-k) \tag{2.44}
\end{equation*}
$$

which is known as convolution sum and can be represented as $y(n)=x(n) * h(n)$. where $*$ denotes the convolution operation.
The convolution sum of two sequences can be found by using following steps.
Step 1: Choose an initial value of n, the starting time for evaluating the output sequence
$y(n)$. If $x(n)$ starts at $n=n_{1}$ and $h(n)$ starts at $n=n_{2}$ then
$\mathrm{n}=\mathrm{n}_{1}+\mathrm{n}_{2}$ is a good choice.

Step 2: Express both sequences in terms of the index k.
Step 3: Fold $h(k)$ about $k=0$ to obtain $h(-k)$ and shift by n to the right if n is positive and left if n is negative to obtain $h(n-k)$.
Step 4: Multiply the two sequences $x(k)$ and $h(n-k)$ element by element and sum the products to get $y(n)$.
Step 5: Increment the index n, shift the sequence $h(n-k)$ to right by one sample and do Step 4. .
Step 6: Repeat Step 5 until the sum of products is zero for all remaining values of n.

Properties of Convolution

(i) Commutative Law: $\mathrm{x}(\mathrm{n}) * \mathrm{~h}(\mathrm{n})=\mathrm{h}(\mathrm{n}) * \mathrm{x}(\mathrm{n})$
(ii) Assortative Law: $\left[x(n) * h_{1}(n)\right] * h_{2}(n)=x(n) *\left[h_{1}(n) * h_{1}(n)\right]$

Solution. Convolution sum is defined as

$$
\begin{aligned}
& y(n)=\sum_{k=-\infty}^{\infty} s(k) h(n-k) \\
& n=0, \quad y(0)=\sum_{k=-\infty}^{\infty} s(k) h(-k) \\
& s(k)=\underset{\uparrow}{2,1,3,1} \\
& h(k)=1, \underset{\uparrow}{2,2,-1} \\
& \begin{array}{|cc|}
\hline \mathrm{s}(\mathrm{k})= & 2,1,3,1 \\
\mathrm{~h}(-\mathrm{k}) & = \\
\hline
\end{array} \\
& y(0)=\sum_{k=-\infty}^{\infty} s(k) h(-k)=2 \times 2+1 \times 1=4+1=5 \quad-1,2, \\
& n=1, \quad y(1)=\sum_{k=-\infty}^{\infty} s(k) h(1-k) \\
& \text { 2. } 2 ; 3,1 \\
& 221 \rightarrow
\end{aligned}
$$

$$
\begin{aligned}
& s(k)=\quad \underset{\uparrow}{2}, 1,3,1 \\
& h(1-k)=-1,2,2,1 \\
& y(1)=\sum_{k=-\infty}^{\infty} s(k) h(1-k)=2 \times 2+1 \times 2+3 \times 1 \\
& =4+2+3=9 \\
& n=2, \quad y(2)=\sum_{k=-\infty}^{\infty} s(k) h(2-k) \\
& s(k)=2,1,3,1 \\
& h(2-k)=-1,2,2,1 \\
& y(2)=\sum_{k=-\infty}^{\infty} s(k) h(2-k)=2 \times(-1)+1 \times 2+3 \times 2 \\
& +1 \times 1=-2+2+6+1=7 \\
& n=3, \quad y(3)=\sum_{k=-\infty}^{\infty} s(k) h(3-k) . \\
& \begin{aligned}
& \mathrm{s}(\mathrm{k})= 2,1,3,1 \\
& \mathrm{\uparrow} \\
& \mathrm{~h}(3-\mathrm{k})=\quad-1,2,2,1
\end{aligned} \\
& y(3)=\sum_{k=-\infty}^{\infty} s(k) h(3-k)=1 \times(-1)+3 \times 2+1 \times 2 \\
& =-1+6+2=7 \\
& \mathrm{n}=4, \quad \mathrm{y}(4)=\sum_{\mathrm{k}=-\infty}^{\infty} \mathrm{s}(\mathrm{k}) \mathrm{h}(4-\mathrm{k}) \\
& \mathrm{s}(\mathrm{k})=\underset{\uparrow}{2,1,3,1} \\
& h(4-k)=\quad-1,2,2,1 \\
& y(4)=\sum_{k=-\infty}^{\infty} s(k) h(4-k)=3 \times(-1)+1 \times 2 \\
& n=5, \quad y(5)=\sum_{k=-\infty}^{\infty} s(k) h(5-k)
\end{aligned}
$$

$\mathrm{s}(\mathrm{k})$	$=$$2,1,3,1$ $\mathrm{~h}(5-\mathrm{k})$
$=$	$-1,2,2,1$

$$
y(5)=\sum_{k=-\infty}^{\infty} s(k) h(5-k)=1 \times(-1)=-1
$$

$n=6, y(6)=0$
$\mathrm{n}=7, \mathrm{y}(7)=0$
If sequences $s(n)$ and $h(n)$ have M sample points and N sample points, respectively, then convolution of these sequences will have $\mathrm{M}+\mathrm{N}-1$ sample points. In this example sequence $s(n)$ has 4 points, and sequence $s(n)$ has 4 points.
Then convolution of these sequences will have $4+4-1=7$ points

$$
\begin{aligned}
& n=-1, \quad, \quad y(-1)=\sum_{k=-\infty}^{\infty} s(k) h(-1-k) \\
& \begin{array}{cc|}
\hline \mathrm{s}(\mathrm{k})= & 2,1,3,1 \\
\mathrm{~h}(-1-\mathrm{k}) & =-1,2,2,1
\end{array} \\
& y(-1)=\sum_{k=-\infty}^{\infty} s(k) h(-1-k)=2 \times 1=2
\end{aligned}
$$

Resultant of convolution sum of $s(n)$ and $h(n)$ is $y(n)$ and is given as follows :

$$
\begin{aligned}
\mathrm{y}(\mathrm{n}) & =\{\mathrm{y}(-1), \mathrm{y}(0), \mathrm{y}(1), \mathrm{y}(2), \mathrm{y}(3), \mathrm{y}(4), \mathrm{y}(5)\} \\
& =\{2,5,9,7,7,-1,-1\}
\end{aligned}
$$

2.11 Properties of Convolution Sum

Convolution is a mathematical operation between two signal sequences $s(n)$ and $h(n)$. This operation satisfies following properties :

1. Commutative law
2. Associative law
3. Distributive law.

Commutative Law. Convolution sum satisfies commutative law. According to commutative law for a system shown in Fig. 2.24.

LTI System

Fig. 2.24 LTI system

$$
s(n) * h(n)=h(n) * s(n)
$$

or

$$
\sum_{k=-\infty}^{\infty} s(k) h(n-k)=\sum_{k=-\infty}^{\infty} h(k) s(n-k)
$$

This is true only for LTI discrete-time systems.
Associative Law. Convolution sum also satisfies the associative law. According to associative law for the systems shown in Fig. 2.25.

$$
\left[s(n) * h_{1}(n)\right] * h_{2}(n)=s(n) *\left[h_{1}(n)^{*} h_{2}(n)\right]
$$

Fig. 2.25 Cascading of two discrete-time $L T I$ systems.
Distributive Law. This law is also satisfied by convolution sum of two-discrete-time LTI systems. According to the distributive law for the systems shown in Fig. 2.26.

$$
s(n) *\left[h_{1}(n)+h_{2}(n)\right]=s(n) * h_{1}(n)+s(n)^{*} R_{2}(n)
$$

Fig. 2.26 Two discrete-time LTI systems in parallel.

2.12 Inter connection of LTI Systems

Fig. 2.27(a) Parallel connection of two system; (b) Equivalent system

From Fig. 2.27(a) the output of system 1 is

$$
\begin{equation*}
y_{1}(n)=x(n) * h_{1}(n) \tag{2.45}
\end{equation*}
$$

and the output of system 2 is

$$
\begin{equation*}
y_{2}(n)=x(n) * h_{2}(n) \tag{2.46}
\end{equation*}
$$

The output

$$
\begin{align*}
& y(n)=y_{1}(n) * y_{2}(n) \\
& \quad=x(n) * h_{1}(n)+x(n) * h_{2}(n) \\
& =\sum_{k=-\infty}^{\infty} x(k) h_{1}(n-k)=\sum_{k=-\infty}^{\infty} x(k) h_{2}(n-k) \\
& =\sum_{k=-\infty}^{\infty} x(k)\left[h_{1}(n-k)+h_{2}(n-k)\right] \\
& =\sum_{k=-\infty}^{\infty} x(k) h(n-k) \\
& =x(n) * h(n) \tag{2.47}
\end{align*}
$$

where $h(n)=h_{1}(n)+h_{2}(n)$.
Thus if the two-systems are connected in parallel the overall impulse response is equal to stm of two impulse responses.

2.12.2 Cascade Connection of Two Systems

Consider two LT1 systems with impulse responses $h_{1}(n)$ and $h_{2}(n)$ connected in cascade. Let.

(a)

(b)

Fig. 2.28 (a) Cascade connection of two systems; (b) Equivalent system $y_{1}(n)$ is the output of the first system. Then

$$
y_{1}(k)=x(k) * h_{1}(k)
$$

$$
\begin{equation*}
=\sum_{v=-\infty}^{\infty} x(v) h_{1}(k-v) \tag{2.48}
\end{equation*}
$$

the output

$$
\begin{align*}
y(n) & =y_{1}(k) * h_{2}(k) \\
& =\left[\sum_{v=-\infty}^{\infty} x(v) h_{1}(k-v)\right] * h_{2}(k) \tag{2.49}
\end{align*}
$$

$$
\begin{align*}
& \qquad \begin{array}{l}
y(n)=\sum_{k=-\infty}^{\infty} \sum_{v=-\infty}^{\infty} x(v) h_{1}(k-v) h_{2}(n-k) \\
\text { Let } \\
\qquad \begin{aligned}
y(n) & =\sum_{v=-\infty}^{\infty} x(v) \sum_{p=-\infty}^{\infty} h_{1}(p) h_{2}(n-v-p) \\
= & \sum_{v=-\infty}^{\infty} x(v) h(n-v) \\
= & x(n) * h(n)
\end{aligned} \\
\text { where } h(n)=\sum_{v=-\infty}^{\infty} h_{1}(k) h_{2}(n-k) \\
=h_{1}(n) * h_{2}(n)
\end{array}
\end{align*}
$$

Hence the impulse Response of two LT1 systems connected in cascade is the convolution of the individual impulse responses.

E.xample 2.13

An inter connection of LT1 systems is shown in Fig. 2.29.
The impulse responses are $h_{1}(n)=\left(\frac{1}{2}\right)^{n}[u(n)-u(n-3)] ; h_{2}(n)=\delta(n)$
and $h_{3}(n)=u(n-I)$. Let the impulse response of the overall system from $x(n)$ to $y(n)$ be denoted as $h(n)$.
(a) Express $h(n)$ in terms of $h_{1}(n), h_{2}(n)$ and $h_{3}(n)(b)$ Evaluate $h(n)$.

Fig. 2.29

Solution

The systems with impulse responses $h_{2}(n)$ and $h_{3}(n)$ are connected in parallel. This can be replaced system an equivalent system whose impulse response is sum of two individual impulse responses. That is

$$
h^{\prime}(\mathrm{n})=\mathrm{h}_{2}(\mathrm{n})+\mathrm{h}_{3}(\mathrm{n})
$$

Fig. 2.30
Now the systems with impulse responses $h_{1}(n)$ and $h^{\prime}(n)$ is connected in cascade. Therefore, the overall impulse response

$$
\begin{aligned}
& h(n)=h_{1}(n) * h^{\prime}(n) \\
&=h_{1}(n) *\left[h_{2}(n)+h_{3}(n)\right] \\
&=h_{1}(n) * h_{2}(n)+h_{1}(n) * h_{3}(n)
\end{aligned}
$$

Given $h_{1}(\mathrm{n})=\left(\frac{1}{2}\right)^{\mathrm{n}}[\mathrm{u}(\mathrm{n})-\mathrm{u}(\mathrm{n}+3)]$

$$
\begin{aligned}
& h_{2}(n)=\delta(n) \\
& h_{3}(n)=u(n-1) \\
& h_{1}(n) * h_{2}(n) \\
&= {\left[\left(\frac{1}{2}\right)^{n}[u(n)-u(n-3)] * \delta(n)\right.} \\
&=\left(\frac{1}{2}\right)^{n}[u(n)-u(n-3)] \\
& h_{1}(n) * h_{3}(n) \\
&=\left\{\left(\frac{1}{2}\right)^{n}[u(n)-u(n-3)]\right\} * u(n-1) \\
&=\left(\frac{1}{2}\right)^{n} u(n) * u(n-1)-\left(\frac{1}{2}\right)^{n} u(n-3) * u(n-1)
\end{aligned}
$$

Let us take

$$
\begin{aligned}
& y_{1}(n)=\left(\frac{1}{2}\right)^{n} u(n) * u(n-1) \\
& \left.\begin{array}{c}
y_{1}(n)=\sum_{k=0}^{n-1}\left(\frac{1}{2}\right)^{n} \text { for } n>\sum_{\text {for } n<1} \\
=0
\end{array}\right) \quad \sum_{n=0}^{n} a^{n}=\frac{1-a^{n+1}}{1-a} \\
& \Rightarrow y_{1}(n)=\frac{1-\left(\frac{1}{2}\right)^{n}}{1-\frac{1}{2}}=2\left[1-\left(\frac{1}{2}\right)^{n}\right]
\end{aligned}
$$

$$
\begin{gathered}
\Rightarrow y_{1}(\mathrm{n})=2\left[1-\left(\frac{1}{2}\right)^{n}\right] \text { for } \mathrm{n} \geq 1 \\
=0 \quad \text { for } \mathrm{n}<1
\end{gathered}
$$

Therefore,

$$
\begin{aligned}
& y_{1}(n)=2\left[1-\left(\frac{1}{2}\right)^{n}\right] u(n-1) \\
& y_{2} \mathrm{n}=\left(\frac{1}{2}\right)^{\mathrm{n}} \mathrm{u}(\mathrm{n}-3) * \mathrm{u}(\mathrm{n}-1) \\
& =\sum_{\mathrm{k}=3}^{\mathrm{n}-1}\left(\frac{1}{2}\right)^{n} \text { for } \mathrm{n} \geq 4 \longrightarrow-2 \\
& =0 \quad \text { for } \mathrm{n}<4 \\
& \Rightarrow y_{2}(n)=\left(\frac{1}{8}\right) \frac{\left[1-\left(\frac{1}{2}\right)^{n-3}\right]}{1-\frac{1}{2}}=\text { for } n \geq 4 \\
& =\frac{1}{4}\left[1-8\left(\frac{1}{2}\right)^{n}\right] \text { for } \mathrm{n} \geq 4 \\
& =\left[\frac{1}{4}-2\left(\frac{1}{2}\right)^{n}\right] \text { for } n \geq 4 \\
& =\frac{1}{4} u(n-4)-2\left(\frac{1}{2}\right)^{n} u(n-4) \\
& \Rightarrow h(n)=\left(\frac{1}{2}\right)^{n}[u(n)-u(n-3)]+2\left[1-\left(\frac{1}{2}\right)^{n} \cdot\right] u(n-1) \\
& +\left[\frac{1}{4}-2\left(\frac{1}{2}\right)^{n}\right] u(n-4)
\end{aligned}
$$

2.13 Correlation of Two Sequences

So far we discussed about the convolution of two signals which is used to find the output $y(\mathrm{n})$ of a system, if the impulse response $h(\mathrm{n})$ of the system and the input signal x (n) are known. In this section, we will study a mathematical operation known as correlation that closely resembles convolution. Correlation is basically used to compare two signals. It occupies a significant place in signal processing. It has application in radar and sonar system where the location of the target is measured by comparing the transmitted and reflected signals. Other
applications of correlation includes in image processing and control engineering etc.
Definition: Correlation is a measure of the degree to which two signals are similar.
The correlation of two signals is divided into (i) Cross-correlation, (ii) Auto-correlation.

2.13.1 Cross-Correlation

The cross-correlation between a pair of signals $x(n)$ and $y(n)$ is given by

$$
\begin{equation*}
\gamma_{\mathrm{xy}}(l)=\sum_{\mathrm{n}=-\infty}^{\infty} \mathrm{x}(\mathrm{n}) \mathrm{y}(\mathrm{n}-l) \quad l=0 \pm 1, \pm 2, \pm 3 \tag{2.51}
\end{equation*}
$$

The index l is the shift (lag) parameter. The order of subscripts $x y$ indicates that $x(n)$ is the reference sequence that remains unshifted in time whereas the sequence $y(n)$ is shifted l units in time with respect to $\mathrm{x}(\mathrm{n})$.

If we wish to fix $y(\mathrm{n})$ and to shift $\mathrm{x}(\mathrm{n})$, then correlation of two sequences can be written as

$$
\begin{align*}
\gamma_{\mathrm{xy}}(l) & =\sum_{\mathrm{n}=-\infty}^{\infty} \mathrm{y}(\mathrm{n}) \mathrm{x}(\mathrm{n}-l) \\
& =\sum_{\mathrm{n}=-\infty}^{\infty} \mathrm{y}(\mathrm{n}+l) \mathrm{x}(\mathrm{n}) \tag{2.52}
\end{align*}
$$

If the time shift $l=0$, then we get

$$
\begin{equation*}
\gamma_{x y}(0)=\gamma_{y x}(0)=\sum_{n=-\infty}^{\infty} y(n) y(n) \tag{2.53}
\end{equation*}
$$

Comparing Eq. (2.51) with Eq. (2.52) we find that

$$
\gamma_{\mathrm{xy}}(l)=\gamma_{\mathrm{yx}}(-l)
$$

where $\gamma_{y x}(-l)$ is the folded version of $\gamma_{x y}(l)$ about $l=0$.
We can rewrite Eq. (2.51) as

$$
\begin{align*}
& \gamma_{\mathrm{xy}}(l)=\sum_{\mathrm{n}=-\infty}^{\infty} \mathrm{x}(\mathrm{n}) \mathrm{y}[-(l-\mathrm{n})] \\
& =\mathrm{x}(l) * \mathrm{y}(-l) \tag{2.54}
\end{align*}
$$

2.13.2 Autocorrelation

The autocorrelation of a sequence is correlation of a sequence with itself. The autocorrelation of a sequence $x(n)$ is defined by

$$
\begin{equation*}
\gamma_{\mathrm{xy}}(l)=\sum_{\mathrm{n}=-\infty}^{\infty} \mathrm{x}(\mathrm{n}) \mathrm{x}(\mathrm{n}-l)=\mathrm{x}(l) * x(-l) \tag{2.55}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\gamma_{x y}(l)=\sum_{n=-\infty}^{\infty} x(n+l) x(n) \tag{2.56}
\end{equation*}
$$

If the time shift $l=0$, then we have

$$
\begin{equation*}
\gamma_{x y}(0)=\sum_{n=-\infty}^{\infty} x^{2}(n) \tag{2.57}
\end{equation*}
$$

Example 2.14

Determnne the cross-correlation sequence $\gamma_{s y}(l)$ of the sequences

$$
\begin{aligned}
& s(m)=\{2,1,3\} \\
& y(n)=\{1,2,2\}
\end{aligned}
$$

Solution:

Number of sample points in resultant of correlation of two discrete-time sequences

$$
=3+3-1=5 .
$$

Cross-correlation sequence is defined as

$$
\begin{gathered}
\qquad \begin{array}{l}
\gamma_{S Y}(l)=\sum_{n=-\infty}^{\infty} s(n) y(n-l) \\
\text { For } l=0 \quad \\
\gamma_{S Y}(0)=\sum_{n=-\infty}^{\infty} s(n) y(n) \\
s(n)=\{2,1,3\} \\
y(n)=\{1,2,2\} \\
\uparrow
\end{array} \\
\gamma_{S Y}(0)=\sum_{n=-\infty}^{\infty} s(n) y(n)=2 \times 1+1 \times 2+3 \times 2=2+2+6=10
\end{gathered}
$$

$$
\begin{gathered}
\text { For } l=1 \quad \gamma_{S Y}(1)=\sum_{n=-\infty}^{\infty} s(n) y(n-1) \\
s(n)=\{2,1,3\} \\
\uparrow_{i}(n-1)=\quad 1,2,2 \\
\gamma_{S Y}(1)=\sum_{n=-\infty}^{\infty} s(n) y(n-1)=1 \times 1+3 \times 2=1+6=7
\end{gathered}
$$

For $l=2$

$$
\begin{aligned}
& 2 \quad \gamma_{S Y}(2)=\sum_{n=-\infty}^{\infty} s(n) y(n-2) \\
& s(n)=2,1,3 \\
& y(n-2)=\quad 1,2,2 \\
& \gamma_{S Y}(2)=\sum_{n=-\infty}^{\infty} s(n) y(n-2)=3 \times 1=3 \\
& \gamma_{\mathrm{SY}}(3)=0 \\
& \gamma_{\mathrm{SY}}(4)=0 \\
& \gamma_{\mathrm{SY}}(5)=0 \\
& \vdots
\end{aligned}
$$

For $l=-1, \quad \gamma_{\mathrm{SY}}(-1)=\sum_{\mathrm{n}=-\infty}^{\infty} \mathrm{s}(\mathrm{n}) \mathrm{y}(\mathrm{n}+1)$

$$
\begin{gathered}
s(n)=2,1,3 \\
y(n-1)=1,2,2 \\
\gamma_{S Y}(-1)=\sum_{n=-\infty}^{\infty} s(n) y(n+1)=2 \times 2+1 \times 2=6
\end{gathered}
$$

For $l=-2, \quad \gamma_{\mathrm{SY}}(-2)=\sum_{\mathrm{n}=-\infty}^{\infty} \mathrm{s}(\mathrm{n}) \mathrm{y}(\mathrm{n}+2)$

$$
\begin{aligned}
\mathrm{s}(\mathrm{n}) & =2,1,3 \\
\mathrm{y}(\mathrm{n}+1) & =1,2,2
\end{aligned}
$$

$$
\begin{aligned}
& \gamma_{S Y}(-2)=\sum_{n=-\infty}^{\infty} s(n) y(n+2)=2 \times 2=4 \\
& \gamma_{s Y}(-3)=0 \\
& \gamma_{s Y}(-4)=0 \\
& \gamma_{S Y}(-5)=0
\end{aligned}
$$

The'resultant cross-correlation sequence

$$
\begin{aligned}
& \gamma_{S Y}(1)=\left[\gamma_{S Y}(-2), \gamma_{S Y}(-1), \gamma_{S Y}(0), \gamma_{S Y}(1), \gamma_{S Y}(2)\right] \\
&=\{4,6,10,7,3\} \\
& \uparrow
\end{aligned}
$$

Example 2.15

Compute the auto-correlation of the signal

$$
s(n)=A^{n} u(n), 0<A<1
$$

Solution :

Since $s(n)$ is an infinite-duration signal and its autocorrelation will also have infinite duration. There will be two cases:
Case - I. If $l>0$

$$
\begin{aligned}
\gamma_{s s}(1) & =\sum_{n=-\infty}^{\infty} s(n) s(n \dot{\sim} l)=\sum_{n=-\infty}^{\infty} A^{n} u(n) \cdot A^{n-r} u(n-l) \\
& =\sum_{n=1}^{\infty} A^{n} \cdot A^{n-1} \\
& =\sum_{n=l}^{\infty} A^{n} \cdot A^{n} \cdot A^{n-l}=A^{m / l} \sum_{n=l}^{n}\left[A^{2}\right]^{n}
\end{aligned}
$$

since $\mathrm{A}<1$, infinite series coverages

$$
\begin{equation*}
=\mathrm{A}^{-\prime}\left[\frac{\mathrm{A}^{2 l}}{1-\mathrm{A}^{2}}\right]=\frac{\mathrm{A}^{\prime}}{1-\mathrm{A}^{2}}, l \geq 0 \tag{a}
\end{equation*}
$$

Case II. For $l<0$

$$
\gamma_{s s}(l)=\sum_{n=-\infty}^{\infty} s(n) s(n-l)=\sum_{n=0}^{\infty} A^{n}: A^{n}: A^{n-l}=A^{n-l} \sum_{n=1}^{n}\left[A^{2}\right]^{n}
$$

$$
\begin{equation*}
=A^{-1} \cdot\left[\frac{1}{1-\mathrm{A}^{2}}\right]=\frac{\mathrm{A}^{-1}}{1-\mathrm{A}^{2}}, l<0 \tag{b}
\end{equation*}
$$

From Eqn. (a) and (b), we get

$$
\left.\begin{array}{l}
\gamma_{s s}(l)=\frac{\mathrm{A}^{\prime}}{1-\mathrm{A}^{2}}, l \geq 0 \\
\gamma_{\mathrm{ss}}(l)=\frac{\mathrm{A}^{-1}}{1-\mathrm{A}^{2}}, l<0
\end{array}\right\} \quad \text { Auto - correlation sequences }
$$

Hence auto-correlation of the signal $s(n)=A^{n} u(n), 0<A<l$ is given as

$$
\gamma_{\mathrm{SS}}(l)=\frac{\mathrm{A}^{|l|}}{1-\mathrm{A}^{2}},-\infty<l<\infty
$$

2.14 Time Response Analysis of Discrete-time Systems

There are two basic methods for analysing the response of a linear system to a given input signal. In first method the input signal its first resolved into sum of elementary signals (impulse). Then using the linear property of the system the response of the system to the elementary signals are added to obtain the total response.

Second method is based on the direct solution of the difference equation representing the system.
The general form of difference equation is

$$
\begin{equation*}
y(n)=-\sum_{k=1}^{N} a_{k} y(n-k)+\sum_{k=0}^{M} b_{k} x(n-k) \tag{2.58}
\end{equation*}
$$

where N is called the order of the difference equation. The solution of the difference equation consists of two parts i.e.,
where $y_{h}(n)$, the natural response is known as the homogenous solution and $y_{p}(n)$ the forced response is called as particular solution.

The homogenous solution is obtained by setting terms involving the input $x(n)$ to zero. Thus from Eq. (2.58) we have

$$
\begin{equation*}
\sum_{k=0}^{N} a_{k} y(n-k)=0 \tag{2.59}
\end{equation*}
$$

where $a_{0}=1$
To solve the Eq. (2.59) assume

$$
\begin{equation*}
y_{h}(n)=\lambda^{n} \tag{2.60}
\end{equation*}
$$

where the subscript h on $y(n)$ is used to denote the solution to the homogeneous difference equation.

Substituting Eq. (2.60) in Eq. (2.59) we get

$$
\begin{gathered}
\sum_{k=0}^{N} a_{k} \lambda^{n-k}=0 \\
\lambda^{n-N}\left[\lambda^{N}+a_{1} \lambda^{N-1}+a_{N-1} \lambda+a_{N}\right]=0
\end{gathered}
$$

which gives

$$
\begin{equation*}
\lambda^{N} a_{1} \lambda^{N-1}+\ldots . . a_{N-1} \lambda+a_{N}=0 \tag{2.61}
\end{equation*}
$$

The Eq. (2.61) is known as characteristic equation and has N roots, which we denote as

$$
\lambda_{1}, \lambda_{2} \ldots, \lambda_{\mathrm{N}}
$$

If $\lambda_{1}, \lambda_{2} \ldots, \lambda_{N}$ are distinct, the general solution is of the form

$$
\begin{equation*}
\mathrm{y}_{\mathrm{h}}(\mathrm{n})=\mathrm{C}_{1} \lambda_{1}^{n}+\mathrm{C}_{2} \lambda_{2}^{\mathrm{n}}+\ldots \mathrm{C}_{\mathrm{N}} \lambda_{\mathrm{N}}^{\mathrm{n}} \tag{2.62}
\end{equation*}
$$

For example, if the roots are $\lambda_{1}=2$ and $\lambda_{2}=3$, then

$$
\begin{equation*}
y_{h}(n)=C_{1}(2)^{n}+C_{2}(3)^{n} \tag{2.63}
\end{equation*}
$$

If the roots of the characteristic equation are repeated, say λ_{1} is repeated for m times, then the general solution of $y_{h}(n)$ contains the term

For each repeat root, there is a term of this form in $y_{h}(n)$.
If $\lambda_{1}=2$ is repeated for 2 times then $2^{n}\left(C_{1}+\mathrm{nC}_{2}\right)$ is the general solution.
If the characteristic equation has complex roots for example,

$$
\begin{equation*}
\lambda_{1}, \lambda_{2}=\mathrm{a} \pm \mathrm{jb} \tag{2.65}
\end{equation*}
$$

then the solution $y_{h}(n)=r^{n}\left(A_{1} \cos n \theta+A_{2} \sin n \theta\right)$

$$
\begin{equation*}
\theta=\tan ^{-1} \mathrm{~b} / \mathrm{a} \tag{2.66}
\end{equation*}
$$

A_{1} and A_{2} are constants.
The particular solution $y_{p}(n)$ is to satisfy the difference equation for the specific input signal $x(n), n \geq 0$. In other words, $y_{p}(n)$ is any solution satisfying

$$
\begin{equation*}
1+\sum_{k=1}^{N} a_{k} y_{p}(n-k)=\sum_{k=0}^{M} b_{k} x(n-k) \tag{2.68}
\end{equation*}
$$

To solve Eq. (2.68), we assume for $y_{p}(n)$, a form that depends on the form of $x(n)$. The general form of the particular solution for several inputs are shown in table 2.1.

Table 2.1. General form of particular solution for several types of input

$x(n)$ input signal	$y_{p}(n)$ Particular solution		
$A($ Step input $)$	K		
$A M^{n}$	K^{n}		
$A n^{M}$	$K_{0} n^{M}+K_{1} n^{M-1} \ldots K_{M}$		
$A^{n} n^{M}$	$A^{n}\left(K_{0} n^{M}+K_{1} n^{M-1}+\ldots K_{M}\right)$		
$A \cos \omega_{0} n$			
$A \sin \omega_{0} n$		$\} \quad$	$K_{1} \cos \omega_{0} n+K_{2} \sin \omega_{0} n$
:---			

To obtain the total solution we have to add the homogeneous solution and particular solution. Thus

$$
\begin{equation*}
y(n)=y_{h}(n)+y_{p}(n) \tag{2.69}
\end{equation*}
$$

The resultant sum $y(n)$ contains the constant parameters $\{y$,$\} embodied in the$ homogeneous solution component $y_{h}(n)$. These constants can be determined by applying initial conditions.

2.14.1 Impulse Response

The general form of difference equation is

$$
y(n)=\sum_{k=1}^{N} a_{k} y_{p}(n-k)=\sum_{k=0}^{M} b_{k} x(n-k)
$$

For the input $x(n)=\delta(n)$

$$
\begin{equation*}
\sum_{k=0}^{M} b_{k} x(n-k)=0 \text { for } n>M \tag{2.71}
\end{equation*}
$$

Then Eq. (2.70) can be written as

$$
\begin{equation*}
y(n)=\sum_{k=0}^{N} a_{k} y(n-k)=0 \quad a_{0}=1 \tag{2.72}
\end{equation*}
$$

The solution of Eq.(2.72) is known as homogeneous solution. The particular solution is zero since $x(n)=0$ for $n>0$, that is

$$
\begin{equation*}
y_{0}(n)=0 \tag{2.73}
\end{equation*}
$$

Therefore we can obtain the impulse response by solving the homogenous equation and imposing the initial conditions to determine the arbitrary constants.

2.14.2 Step response

The step response can be easily expressed in terms of the impulse response using convolution sum. Let a discrete time system have impulse response $h(n)$ and denote the step response as $\mathrm{s}(\mathrm{n})$.

The $\mathrm{s}(\mathrm{n})=\mathrm{h}(\mathrm{n}) * \mathrm{u}(\mathrm{n})$

$$
=\sum_{k=-\infty}^{\infty} h(k) u(n-k)
$$

Since $u(n-k)=0$ for $k>n$ and $u(n-k)=1$ for $k \leq n$ we have

$$
\begin{equation*}
s(n) \sum_{k=-\infty}^{\infty} h(k) \tag{2.74}
\end{equation*}
$$

That is, the step response is the running sum of the impulse response.

Example 2.16

The discrete-time system

$$
y(n)=n y(n-1)+x(n), \quad n \geq 0
$$

is at rest [i.e., $y(-1)=0$]. Check if the system is linear time invariant and BIBO stable.

Solution :

$$
\begin{equation*}
y(n)=n y(n-1)+x(n) \tag{I}
\end{equation*}
$$

The solution for $y(n)=y_{h}(n)+y_{p}(n)$

$$
\begin{aligned}
& y_{h}(n) \rightarrow \text { homogenous solution } \\
& y_{p}(n) \rightarrow \text { particular solution }
\end{aligned}
$$

Hence we have to find impulse response

$$
\text { i.e, } x(n)=\dot{\delta}(n)
$$

so $\quad y_{p}(n)=0$
Let $y_{h}(n)=\lambda^{n}$
$\begin{array}{ll}\text { So } & \lambda^{n}=n \lambda^{n-1} \quad(\because x(n)=0 \text { for homogenous solution }) \\ \Rightarrow \quad n \lambda^{n-1}(\lambda-n)=0\end{array}$
$\Rightarrow \quad \lambda=0$ or n
So $y_{h}(n)=A n^{n}$
$y(n-k)=A(n-k)^{n-k}$
$y(n, k)=A\left(n^{n}-k\right)$
$y(n, k) \neq y(n-k) \rightarrow$ Time variant

$$
\sum_{n=-\infty}^{\infty} y(n)=A \sum_{n=-\infty}^{\infty} n^{n}=\infty
$$

It is unstable.

Exumple 2.17

Determine the zero-input response of the system described by the second-order difference equation.

$$
x(n)-3 y(n-1)-4 y(n-2)=0
$$

Solution:
$x(n)-3 y(n-1)-4 y(n-2)=0$
For zero input response, i.e. $x(n)=0$,
Also, $-3 y(n-1)-4 y(n-2)=0$
$\Rightarrow \quad y(n-1)=\frac{-4}{3} y(n-2)$
$\Rightarrow \quad y(-1)=\frac{-4}{3} y(-2)$
$(\because$ For $n=0)$

For $\left.\mathrm{n}=1, \mathrm{y}(0)=\frac{-4}{3} \mathrm{y}(-1)=\left(\frac{-4}{3}\right)^{2} x^{2}\right) \quad y(-2)$
$\Rightarrow \quad$ Solution is $y(n)=\left(\frac{-4}{3}\right)^{n+2} y(-2)$

Example 2.18

Determine the impulse response of the following causal system :

$$
y(n)-3 y(n-1)-4 y(n-2)=x(n)+2 x(n-1)
$$

Solution :

$$
\begin{equation*}
y(n)-3 y(n-1)-4 y(n-2)=x(n)+2 x(n-1) \tag{l}
\end{equation*}
$$

For impulse response the particular solution is zero.
Now for homogenous solution,

$$
y(n)-3 y(n-1)-4 y(n-2)=0
$$

Let $y(n)=\lambda^{n}$
so $\quad \lambda^{n}-3 \lambda^{n-1}-4 \lambda^{n-2}=0$
$\Rightarrow \lambda^{2}-3 \lambda-4=0$
$\Rightarrow \lambda=4,-1$
so $y_{h}(n)=C_{1} 4^{n}+C_{2}(-1)^{n}$
For $n=0, \quad y(0)-3 y(-1)-4 y(-2)=x(0)+2 x(-1)$ from eqn. (I)
$\therefore \Rightarrow, y(0)=1$

$$
\begin{align*}
& y(0)=C_{1}+C_{2} \\
\Rightarrow \quad & c_{1}+C_{2}=1 \tag{III}
\end{align*}
$$

$$
\text { For } n=1, \quad y(1)-3 y(0)-0=0+2.1
$$

$$
\begin{aligned}
\Rightarrow & y(1)=5 \\
& y(1)=4 C_{1}-C_{2} \\
\Rightarrow & 4 C_{1}-C_{2}=5
\end{aligned}
$$

From eqns (III) and (IV),

$$
C_{1}=\frac{6}{5}
$$

\& $\quad C_{2}=\frac{-1}{5}$
So $\quad y(n)=\frac{6}{5}(4)^{n}-\frac{1}{5}(-1)^{n}$

Example 2.19

Determine the response of the system with impulse response

$$
h(n)=a^{n} u(n)
$$

to the input signal

$$
x(n)=u(n)-u(n-10)
$$

Solution :

$$
\begin{aligned}
h(n) & =a^{n} u(n) \\
x(n) & =u(n)-u(n-10) \\
y(n) & =x(n) * h(n) \\
& =u(n) * a^{n} u(n)-u(n-10) * u(n) \cdot a^{n} \\
& =\sum_{n=-\infty}^{\infty} u(k) \cdot a^{n-k} u^{n}(n-k)-\sum_{k=-\infty}^{\infty} u(k-10) u(n-k) a^{n-k} \\
& =\sum_{k=0}^{n} a^{n} \cdot a^{-K}-\sum_{n}^{n} a^{n} \cdot a^{-K} \\
& =a^{n}\left[\frac{1-\left(\frac{1}{a}\right)^{n+1}}{1-\frac{1}{a}}-a^{-10} \frac{\left.1-\left(\frac{1}{a}\right)^{n-9}\right]}{1-\frac{1}{a}}\right]
\end{aligned}
$$

Darample 2.20

Determine the impulse response and the unit step response of the systems described by the difference equation

$$
y(n)=0.6 y(n-1)-0.08 y(n-2)+x(n)
$$

Solution :

$$
\begin{equation*}
y(n)=0.6 y(n-1)-0.08 y(n-2)+x(n) \tag{I}
\end{equation*}
$$

Here solution of $y(1)=y_{n}(n)+y_{p}(n)$
For unit step response i.e. $x(n)=4(n) U(n)$
$y_{p}(\mathrm{n})=\mathrm{K}$
So from equation (I),
$\mathrm{K}=0.6 \mathrm{~K}-0.08 \mathrm{~K}+1$
$\Rightarrow 0.48 \mathrm{~K}=1$
$\Rightarrow \mathrm{K}=1 / 0.48 \simeq 2$
$\Rightarrow y_{p}(n)=2$
For homogenous solution, equation(1) becomes,
$y(n)^{\prime}-0.6 y\left(n^{\prime \prime}-1\right)+0.08 y(n-2)=0$
Let $y(n)=\lambda^{n}$
So $\lambda^{n}-0.6 \lambda^{n-1}+0.08 \lambda^{n-2}=0$
$\Rightarrow \lambda^{2}-0.6 \lambda+0.08=0$
$\Rightarrow 100 \lambda^{2}-60 \lambda+8=0$
$\Rightarrow 25 \lambda^{2}-15 \lambda+2=0$
$\Rightarrow 5(\lambda-2)(5 \lambda-1)=0 \Rightarrow \lambda=\frac{1}{5}$ or $\frac{2}{5}$
So $y_{h}(n)=C_{1}\left(\frac{1}{5}\right)^{n}+C_{2}\left(\frac{2}{5}\right)^{n}$

$$
\begin{align*}
\text { So } y(n) & =C_{1}\left(\frac{1}{5}\right)^{n}+C_{2}\left(\frac{2}{5}\right)^{n}+2 \tag{IV}\\
y(0) & =C_{1}+C_{2}+2 \\
y(1) & =\frac{1}{5} C_{1}+\frac{2}{5} C_{2}+2
\end{align*}
$$

From equation (I),

$$
\begin{aligned}
& y(0)=x(0)=1 \\
& y(1)=0.6 y(0)+x(0) \\
& =1.6
\end{aligned}
$$

Now $C_{1}+C_{2}+2=1$
$\Rightarrow \quad C_{1}+C_{2}+-1$
\& $\frac{C_{1}}{5}+\frac{2 C_{2}}{5}+2=1.6$
$\Rightarrow \quad C_{1}+2 C_{2}+10=8$
$\Rightarrow \quad C_{1}+2 C_{2}=-2$
Solving equation (V) \& (VI),

$$
\begin{gathered}
C_{2}=-1, C_{1}=0 \\
\text { So } y(n)=-\left(\frac{2}{5}\right)^{n}+2
\end{gathered}
$$

MISCELLANEOUS SOLVED EXAMPLES

Eximple 2.21

A discrete-time signal $x(n)$ is defined as

$$
x(\mathrm{n})= \begin{cases}1+\frac{\mathrm{n}}{3}, & -3 \leq \mathrm{n} \leq-1 \\ 1, & 0 \leq \mathrm{n} \leq 3 \\ 0, & \text { elsewhere }\end{cases}
$$

(a) Determine its values and sketch the signal $x(n)$.
(b) Can you express the signal $x(n)$ in terms of signals $\delta(n)$ and $u(n)$?

Solution:

$$
x(n)=\left\{\begin{array}{cc}
1+\frac{n}{3} & -3 \leq n \leq-1 \\
1 & 0 \leq n \leq 3 \\
0 & \text { else where }
\end{array}\right.
$$

(a) $x(n)=\{0,-0.33,-0.67,1,1,1,1\}$
(b) $\mathrm{x}(\mathrm{n})=(-0.33) \delta(\mathrm{n}+2)-0.67 \delta(\mathrm{n}+1)+8(n)$

$$
\begin{aligned}
& +\delta(n-1)+\delta(n-2)+\delta(n-3) \\
& x(n)=-0.33 N(n+2
\end{aligned}
$$

Again $x(n)=-0.33[Y(n+2)-u(n+1)]$

$$
\begin{aligned}
& -0.67[4](n+1)-4(n)] \\
& +[u(n)-u(n)
\end{aligned}
$$

$\Rightarrow \mathrm{x}(\mathrm{n})=-0.33 \mathrm{u}(\mathrm{n}+2)-\mathrm{u}(\mathrm{n}+1)+1.67 \mathrm{u}(\mathrm{n})-\mathrm{u}(\mathrm{n}-4)$

Exaunle 2.22

$$
\begin{aligned}
& +\left[u(n)-u(n-1)^{-4}\right]_{\cdot}^{-4} \cdot 1 \\
& +[u(n-1)]
\end{aligned}
$$

$$
\begin{aligned}
& +[u(n-1)-u(n-2)] \cdot 1 \\
& +[u(n-2)-u(n-3) \%
\end{aligned}
$$

$$
\begin{aligned}
& +\left[\frac{\mathrm{u}}{}(\mathrm{n}-2)-\mathrm{u}(\mathrm{n}-2) / \cdot 1\right. \\
& +\sqrt{\mathrm{u}}(\mathrm{n}-3) / \cdot 1
\end{aligned}
$$

$$
+\left[\frac{u}{}(n-3)-u(n-4)\right] \cdot 1
$$

i) Show that any signal can be decomposed into an even and an odd component.
ii) Is the decomposition unique
iii) Illustrate your arguments using the signal

$$
x(n)=\{2,3,4,5,6\}
$$

Solution :

(i) Let a signal is $\mathrm{x}(\mathrm{n})$

Then its inverted signal is $x(-n)$
The even part of the signal is;

$$
x_{e}(n)=\frac{x(n)+x(-n)}{2}
$$

The odd part of the signal is,

$$
\mathrm{x}_{0}(\mathrm{n})=\frac{\mathrm{x}(\mathrm{n})-\mathrm{x}(-\mathrm{n})}{2}
$$

(ii) Yes the decomposition is unique
(iii) $x(n)=\{2, \underset{\uparrow}{3,4,5,6\}}$

$x_{e}(n)=\frac{x(n)+x(-n)}{2}=\{3.5,4.5,4,4,4\}$
$x_{0}(n)=\frac{x(n)-x(-n)}{2}=\{-1.5,-1.5,0,1,2\}$

Exuminle 2.23

Consider the system

$$
y(n)=T[x(n)]=x\left(n^{2}\right)
$$

Determine if the system is time invariant.

Solution:

$$
\begin{aligned}
& y(n)=x\left(n^{2}\right) \\
& \begin{aligned}
y(n, k)= & T[x(n-k)] \\
& =x\left(n^{2}-k\right) \\
y(n-k)= & x\left((n-k)^{2}\right) \\
& =x\left(n^{2}+k^{2}-2 n k\right)
\end{aligned}
\end{aligned}
$$

Here $y(n, k) \neq y(n-k)$
so it is time variant

Example 2.24

Compute the convolution of following signal.

$$
x(n)=\underset{\uparrow}{\{0,1, \dot{4},-3\},} \mathrm{h}(\mathrm{n})=\underset{\uparrow}{\{1,0,-1,-1\}}
$$

Solution :

$$
\begin{aligned}
& x(n)=\underset{\uparrow}{\{ } \underset{\uparrow}{x}, 1,4,-3\}, \quad h(n)=\{1,0,-1,-1\} \\
& y(n)=x(n) * h(n) \\
& =\sum_{k=-\infty}^{\infty} x(k) h(n-k)
\end{aligned}
$$

$y(n)$ will start from $n=0$.
Total no. of signals in $y(n)=4+4-1=7$

$$
\text { i.e. } 0 \leq n \leq 6 \text {. }
$$

$$
\begin{aligned}
y(0) & =\sum_{k=-\infty}^{\infty} x(k) h(n-k) \\
& =x(0) h(0)=0
\end{aligned}
$$

$$
\left.\begin{array}{rl}
y(1) & =\sum_{k=-\infty}^{\infty} x(k) h(1-k) \\
& =x(0) h(1)+x(1) h(0)=0+1=1 \\
y(2) & =\sum_{k=-\infty}^{\infty} x(k) h(2-k)=x(0) h(2)+x(1) h(1)+x(2) h(0) \\
=0+0+4=4 \\
y(3) & =\sum_{k=-\infty}^{\infty} x(k) h(3-k) \\
& =x(0) h(3)+x(1) h(2)+x(2) h(1)+x(3) h(0) \\
& =0+(-1)+0+(-3) 1 \\
& =-4 \\
y(4) & =\sum_{k=-\infty}^{\infty} x(k) h(4-k) \\
& =x(0) h(4)+x(1) h(3)+x(2) h(2)+x(3) h(1) \\
& =0+1(-1)+4 \cdot(-1)+(-3) \cdot 0 \\
& =-5 \\
y(5) & =\sum_{k=-\infty}^{\infty} x(k) h(5-k) \\
= & x(2) h(3)+x(3) h(2) \\
= & 4 \cdot(-1)+(-3) \cdot(-1) \\
& =-1 \\
y(6)=\sum_{k=-\infty}^{\infty} & x(k) h(6-k) \\
=x(3) h(3) \\
=(-3) \cdot(-1) \\
=3
\end{array}\right\} \begin{aligned}
& s 0 y(n)=\{0,1,4,-4,-5,-1,3\} \\
& \uparrow
\end{aligned}
$$

E.ximple 2.25

Compute the convolution of following pair of signals.

$$
\begin{aligned}
& x(n)=U(n+1)-u(n-4)-\delta(n-5) \\
& h(n)=[u(n+2)-u(n-3)] \cdot(3-|n|)
\end{aligned}
$$

Solution:

$$
\begin{array}{rlr}
x(n) & =4(n+1)-u(n-4)-\delta(n-5) & \\
& =\{1,1,1,1,1,0,-1\} \quad n_{1}=-1, N_{1}=7 & \\
& & \\
h(n) & =[u(n+2)-u(n-3)] \cdot(3-|n|) & \\
& =\{1,2,3,2,1\} & n_{2}=-2 \\
\uparrow & N_{2}=5
\end{array}
$$

$$
\mathrm{y}(\mathrm{n})=\mathrm{x}(\mathrm{n}) * \mathrm{~h}(1) \text { will start at } \mathrm{n}=\mathrm{n}_{1}+\mathrm{n}_{2}=-3
$$

Total no. of values of $y(n)$ is $7+5-1=11$

$$
\begin{gathered}
\text { i.e } \begin{array}{c}
y(n)=\sum_{k=-\infty}^{\infty} x(k) h(n-k) \\
y(-3)=\sum_{k=-\infty}^{\infty} x(k) h(-3-k) \\
=x(-1) h(-2)=1 \\
\begin{aligned}
y(-2)=\sum_{k=-\infty}^{\infty} x(k) h(-2-k) \\
=x(-1) h(-1)+x(0) h(-2) \\
=2+1=3
\end{aligned} \\
\begin{array}{r}
y(-1)=\sum_{k=-\infty}^{\infty} x(k) h(-1-k) \\
=x(-1) h(0)+x(0) h(-1)+x(1) h(-2) \\
=3+2+1=6
\end{array} \\
y(0)=\sum_{k=-\infty}^{\infty} x(k) h(-k) \\
=x(-1) h(1)+x(0) h(0)+x(1) h(-1)+x(2) h(-2)
\end{array}
\end{gathered}
$$

$$
\begin{aligned}
&=1.2+1.3+1.2+1.1 \\
&=8 \\
& y(1)= \sum_{k=-\infty}^{\infty} x(k) h(1-k) \\
&= x(-1) h(2)+x(0) h(1)+x(1) h(0)+x(2) h(-1)+x(3) h(-2) \\
&= 1.1+1.2+1.3+1.2+1.1 \\
&= 9 \\
& y(2)= \sum_{k=-\infty}^{\infty} x(k) h(2-k) \\
&= x(0) h(2)+x(1) h(1)+x(2) h(0)+x(3) h(-1)+x(4) h(-2) \\
&= 1.1+1.2+1.3+1.2+0 \\
&= 8 \\
& y(3)= \sum_{k=-\infty}^{\infty} x(k) h(3-k) \\
&= x(1) h(2)+x(2) h(1)+x(3) h(1)+x(4) h(-1)+x(5) h(-2) \\
&= 1.1+1.2+1.3+0+(-1)=7 \\
&= 5 \\
& y(6)= \sum_{k=-\infty}^{\infty} x(k) h(6-k) \\
& y(4)= \sum_{k=-\infty}^{\infty} x(k) h(4-k) \\
&= x(2) h(2)+x(3) h(1)+x(4) h(0)+x(5) h(-1) \\
&= 1.1+1.2+0+(-1) .2 \\
&= 1 \\
&= x=-\infty \\
&= x(3) h(2)+x(4) h(1)+x(5) . h(0) \\
&= x(5-k) \\
& y
\end{aligned}
$$

$$
\begin{aligned}
& =x(4) h(2)+x(5) h(1) \\
& =0+(-1) \cdot 2=-2 \\
y(7) & =\sum_{k=-\infty}^{\infty} x(k) h(7-k) \\
& =x(5) h(2)=(-1) \cdot 1=-1
\end{aligned}
$$

So $y(n)=\{1,3,6,8,9,8,5,1,-2,-1\}$

Example 2.26

Check whether the systems described by the following equations are causal:

$$
\begin{equation*}
y(n)=3 x(n-2)+3 x(n+2) \tag{i}
\end{equation*}
$$

(ii) $y(n)=x(n-1)+a x(n-2)$
(iii) $y(n)=x(-n)$.

Solution : The given expression is

$$
y(n)=3 x(n-2)+3 x(n+2)
$$

From above equation, it is clear that $y(n)$ is determined using the past input sample valus $3 x(n-2)$ and future input sample value $3 x(n+2)$.
Therefore, the given system is a non-causal system.
(ii) The given system is

$$
y(n)=x(n-1)+a x(n-2)
$$

From this equation, it is clear that $y(n)$ is determined using that $y(n)$ is determined using only the previous input sample values $x(n-1)$ and $a x(n-2)$.
Therefore, the given system is a causal system.
(iii) The given system is

$$
y(n)=x(-n)
$$

From this equation, it is clear that the input sample value is located on the negative time axis and the sample values cannot be obtained before $t=0$.
Therefore, the given system is a non-causal system.

Example 2.27

A discrete-time system is represented by the following difference equation in which $x(n)$ is input and $\mathrm{y}(\mathrm{n})$ is the output:

$$
y(n)=3 y^{2}(n-1)-n x(n)+4 x(n-1)-2 x(n+1)
$$

Is this system Linear? Shift-invariant? Causal ?
In each case, justify your answer.
solution:
(i) Check for the linearity

The given expression is

$$
y(n)=3 y^{2}(n-1)-n x(n)+4 x(n-1)-2 x(n+1)
$$

It may be noted that the real condition for linearity is

$$
F[a x(n)]=a \cdot F[x(n)]
$$

\quad Now, $\quad F[a x(n)]=a y(n)=\quad 3 a^{2} y^{2}(n-1)-a n x(n)+4 a x(n-1)-2 a x(n+1)$
and $\quad a \cdot F[x(n)]=a[y(n)]=\quad 3 a^{2}(n-1)-a n x(n)+4 a x(n-1)-2 a x(n+1)$
From above, it is clear that

$$
\mathrm{F}[\mathrm{ax}(\mathrm{n})] \neq \mathrm{a} \cdot \mathrm{~F}[\mathrm{x}(\mathrm{n})]
$$

Therefore, the system is non-linear.

(ii) Check for Shift invariant.

The given system is

$$
y(n)=3 y^{2}(n-1)-n x(n)+4 x(n-1)-2 x(n+1)
$$

It may be noted that the necessary condition for shift-invariance is

$$
y(n-k)=F[x(n-k)]
$$

Now, $\quad F[x(n-k)]=3 y^{2}(n-k-1)-n x(n-k)+4 x(n-k-1)-2 x(n-k+1)$.
Also,

$$
y(n-k)=3 y^{2}(n-k-1)-(n-k) \cdot x(n-k)+4 x(n-k-1)-2 x(n-k+1)
$$

Since $\quad y(n-k) \neq F .[x(n-k)]$
Therefore, the given system is time-invariant. timevarie ant.
(iii) Check for the Causality : The given system if'

$$
y(n)=3 y^{2}(n-1)-n x(n)+4 x(n-1)-2 x(n+1)
$$

It may be noted that the required condition for causality is that the output of a causal system must be dependent only on the present and past values of the input.
From the given equation, it is obvious that the output $y(n)$ is dependent on a future input sample value $x(n+1)$.
Therefore, the given system is a non-causal system.

E.xample 2.28

Check about linearity of the following systems:
(i) $F[x(n)]=a n . x(n)+b$
(ii) $\mathrm{F}[\mathrm{x}(\mathrm{n})]=\mathrm{e}^{\mathrm{x}(\mathrm{n})}$

Solution: (i) The given expression is

$$
\mathrm{F}[\mathrm{x}(\mathrm{n})]=\mathrm{anx}(\mathrm{n})+\mathrm{b}
$$

Now, for two values, $x_{1}(n)$ and $x_{2}(n)$, we have
$F\left[x_{1}(n)\right]+F\left[x_{2}(n)\right]=\left[a n x_{1}(n)+b\right]+\left[a n x_{2}(n)+b\right]$
Now, since from equation (1), (n)

$$
\begin{aligned}
& \text { on (i), it is evident that } \\
& F\left[x_{1}(n)+x_{2}(n)\right] \neq F\left[x_{1}(n)\right]+F\left[x_{2}(n)\right] \\
& n_{1} \neq 0
\end{aligned}
$$

therefore, the given system is non-linear when $\mathrm{b} \neq 0$
(ii) The given expression is

$$
F[x(n)]=e^{x(n)}
$$

For two values, $x_{1}(n)$ and $x_{2}(n)$, we have

$$
\begin{align*}
& \left.x_{1}(n) \text { and } x_{2}(n), x_{1}(n)+x_{2}(n)\right]=e^{x_{1}(n)+x_{2}(n)}=e^{x_{x_{2}}(n)} \cdot e^{x_{2}(n)} \tag{i}\\
& F\left[x_{1}(n)\right]+F\left[x_{2}(n)\right]=e^{x_{1}(n)(n)+x_{2}(n)}
\end{align*}
$$

or

$$
\mathrm{F}\left[\mathrm{x}_{1}(\mathrm{n})+\mathrm{x}_{2}(\mathrm{n})\right] \neq \mathrm{F}\left[\mathrm{x}_{1}(\mathrm{n})\right]+\mathrm{F}\left[\mathrm{x}_{2}(\mathrm{n})\right]
$$

Ans.
Therefore the system is not linear

Example 2.29

Test the following systems for linearity 。
(i) $\mathrm{y}(\mathrm{nT})=\mathrm{F}[\mathrm{x}(\mathrm{nT})]=9 \mathrm{x}^{2}(\mathrm{nT}-\mathrm{T})$
(ii) $y(n T)=F[x(n T)]=(n T)^{3} \cdot x(n T+22)$.

Solution: (i) Given expression is

$$
y(n T)=F[x(n T)]=a x^{2}(n T-T)
$$

For a constant, a other than unity, we have

and

$$
\begin{aligned}
& F[a x(n T)]=9 a^{2} x^{2}(n T-T) \\
& a F[x(n T)]=9 a x^{2}(n T-T)
\end{aligned}
$$

Here, since, $F[a x(n T)] \neq a . F[x(n T)]$,
therefore, the given system is not linear.
(ii) The given system is

For two values, $x_{1}(n T)$ and $x_{2}(n T)$, we have

$$
y(n T)=F[x(n T)]=(n T)^{3} \cdot x(n T+27)
$$

$$
\begin{aligned}
& \mathrm{F}\left[a x_{1}(n T)+b x_{2}(n T)\right]=(n T)^{2}\left[a x_{1}(n T+2 T)+b x_{2}(n T+2 T)\right] \\
& F\left[a x_{1}(n T)+b x_{2}(n T)\right]=a(n T)^{2} x(n T+\rho T)
\end{aligned}
$$

or

$$
\begin{align*}
& \mathrm{F}\left[a x_{1}(\mathrm{nT})+\mathrm{bx}_{2}(\mathrm{nT})\right]=\mathrm{a} \cdot \mathrm{~F}\left[\mathrm{x}_{1}(\mathrm{nT})\right]+\mathrm{bF}\left[\mathrm{x}_{2}(\mathrm{nT})\right] \tag{i}\\
& \text { quation (i), it is evident that the }
\end{align*}
$$

From equation (i), it is evident that the given system is linear.

Evalinple 2.30

Check whether the systems described by the following equations are time-invariant or time-variant:
(i) $\mathrm{y}(\mathrm{n})=\mathrm{F}[\mathrm{x}(\mathrm{n})]=\mathrm{an} \cdot \mathrm{x}(\mathrm{n})$
(ii) $\mathrm{y}(\mathrm{n})=\mathrm{F}[\mathrm{x}(\mathrm{n})]=\mathrm{ax}(\mathrm{n}-1)+\mathrm{bx}(\mathrm{n}-2)$.

Solution : (i) The given expression is

$$
y(n)=F[x(n)]=\text { an. } x(n)
$$

Now, the response to a delayed excitation is given by

$$
\begin{equation*}
F[x(n-k)]=a n \cdot[x(n-k)] \tag{i}
\end{equation*}
$$

and the delayed response is

$$
\begin{equation*}
y(n-k)=a(n-k)[x(n-k)] \tag{ii}
\end{equation*}
$$

Here, from equations (i) and (ii), it may be observed that

$$
F[x(n-k)] \neq y(n-k)
$$

Therefore, the system is not time-invariant, i.e., the system is time dependent.
(ii) The given expression is

$$
y(n)=F[x(n)]=a x(n-1)+b x(n-2)
$$

Here, the response to a delayed excitation is given by

$$
\begin{aligned}
F[x(n-k)] & =a x[(n-k)-1]+b x[(n-k)-2]=y(n-k) \\
& =\text { The delayed response }
\end{aligned}
$$

Thus, in this case, we have

$$
\operatorname{Flx}(n-k)]=y(n-k)
$$

and therefore, the given system is a time-invariant system.

Example 2.31

Test whether the system described by the equation

$$
\mathrm{F}[\mathrm{x}(\mathrm{n})]=\mathrm{n}[\mathrm{x}(\mathrm{n})]^{2}
$$

is linear and time-invariant.
Solution: Check for the linearity :
The given system is

$$
\mathrm{F}[\mathrm{x}(\mathrm{n})\}=\mathrm{n}(\mathrm{x}(\mathrm{n})\}^{2}
$$

For two values, $x_{1}(n)$ and $x_{2}(n)$, we have
and

$$
\begin{aligned}
& \mathrm{F}\left[\mathrm{x}_{1}(\mathrm{n})\right]=\mathrm{n}\left[\mathrm{x}_{1}(\mathrm{n})\right]^{2} \\
& \mathrm{~F}\left[\mathrm{x}_{2}(\mathrm{n})\right]=\mathrm{n}\left[\mathrm{x}_{1}(\mathrm{n})\right]^{2}
\end{aligned}
$$

Therefore,

$$
\mathrm{F}\left[\mathrm{x}_{1}(\mathrm{n})\right]+\mathrm{F}\left[\mathrm{x}_{2}(\mathrm{n})\right]=\mathrm{n}\left[\left\{\mathrm{x}_{1}(\mathrm{n})\right\}^{2}+\left\{\mathrm{x}_{2}(\mathrm{n})\right\}^{2}\right]
$$

Further, we have $\left.\left.\left.+x_{2}(n)\right]=\left[x_{1}(n)+x_{2}(n)\right]^{2}+2 x_{1}(n) x_{2}(n)\right\}\right]$

$$
\begin{aligned}
& \text { we have } \\
& \mathrm{F}\left[\mathrm{x}_{1}(\mathrm{n})+\mathrm{x}_{2}(\mathrm{n})\right]=\mathrm{n}\left[\mathrm{x}_{1}(\mathrm{n})+\mathrm{x}_{2}(\mathrm{n})\right]^{2} \\
&=\mathrm{n}\left[\left\{\mathrm{x}_{1}(\mathrm{n})\right\}^{2+\left\{x_{2}(n)\right\}^{2}+2 x_{1}(n) x_{2}}\right.
\end{aligned}
$$

Here, since

Check for Time-Invariant :
The given expression is

$$
\begin{aligned}
& \text { The given expression is } \\
& \qquad F[x(n)]=n[x(n)]^{2}=y(n) \\
& \text { Now, the response to a delayed excitation is }
\end{aligned}
$$

$$
F\left[(x(n-k)]=n\left[(x(n-k)]^{2}\right.\right.
$$

Also, the delayed response will be

$$
y(n-k)-(n-k)[x(n-k)]^{2}
$$

Thus, we observe that

$$
y(n-k) \neq F[x(n-k)]
$$

Therefore, the given system is not a time-invariant system.

Example 2.32

Check the discrete-time system for time-invariance which is described by the following difference equation

$$
y(n)=4 n x(n)
$$

Solution: The response to a delayed input is

$$
\begin{equation*}
y(n, k)=4 n x(n-k) \tag{i}
\end{equation*}
$$

The delayed response will be

$$
\begin{equation*}
y(n-k)=4(n-k) x(n-k) \tag{ii}
\end{equation*}
$$

It is clear that both responses are not equal, i.e.

$$
y(n, k) \neq y(n-k)
$$

Therefore, the given discrete-time system $y(n)=4 n x(n)$ is not time-invariant. It is a timevarying system.

Eximple 2.33.

Test whether the system described by the equation

$$
\mathrm{F}[\mathrm{x}(\mathrm{n})]=\mathrm{a}[\mathrm{x}(\mathrm{n})]^{2}+\mathrm{b} \cdot \mathrm{x}(\mathrm{n})
$$

is linear and time-invariant.
Solution : Test for linearity :
The given system is

$$
F[x(n)]=a[x(n)]^{2}+b x(n)
$$

For two values of $x_{1}(n)$ and $x_{2}(n)$, we have

$$
F\left[x_{1}(n)\right]=a\left[x_{1}(n)\right]^{2}+b x_{1}(n)
$$

and $\quad \mathrm{F}\left[\mathrm{x}_{2}(\mathrm{n})\right]=\mathrm{a}\left[\mathrm{x}_{2}(\mathrm{n})\right]^{2}+\mathrm{bx}_{2}(\mathrm{n})$
Therefore,

$$
\begin{equation*}
F\left[x_{1}(n)\right]+F\left[x_{2}(n)\right]=a\left[\left\{x_{1}(n)\right\}^{2}+\left\{x_{2}(n)\right\}^{2}\right]+b\left[x_{1}(n)+x_{2}(n)\right] \tag{i}
\end{equation*}
$$

Also $\mathrm{F}\left[\mathrm{x}_{1}(\mathrm{n})+\mathrm{x}_{2}(\mathrm{n})\right]=\mathrm{a}\left[\mathrm{x}_{1}(\mathrm{n})+\mathrm{x}_{2}(\mathrm{n})\right]^{2}+\mathrm{b}\left[\mathrm{x}_{1}(\mathrm{n})+\mathrm{x}_{2}(\mathrm{n})\right]$
or $\quad F\left[x_{1}(n)+x_{2}(n)\right]=a\left[\left\{x_{1}(n)\right\}^{2}+\left\{x_{2}(n)\right\}^{2}+2 x_{1}(n) x_{2}(n)\right]+b x_{1}(n)+b x_{2}(n)$
From equations (i) and (ii), it is clear that

$$
F\left[x_{1}(n)+x_{2}(n)\right] \neq F\left[x_{1}(n)\right]+F\left[x_{2}(n)\right]
$$

Therefore, the given system is a non-linear system.
Test for Time-invariant :
The given system is

$$
F\left[x_{1}(n)\right]=a[x(n)]^{2}+b x(n)=y(n)
$$

Now, the response to a delayed excitation is

$$
\begin{equation*}
F[x(n-k)]=a[x(n-k)]^{2}+b x(n-k) \tag{iii}
\end{equation*}
$$

and the delayed response is

$$
\begin{equation*}
y(n-k)=a[x(n-k)]^{2}+b[x(n-k)] \tag{iv}
\end{equation*}
$$

From equations (iii) and (iv), it is clear that the system is time-invariant.

Example 2.34

The input $x(n)$ and the impulse response $h(n)$ of a discrete-time LTI system are given by

$$
x(n)=u(n) \text { and } h(n)=a^{n} u(n) 0<a<1
$$

(a) Compute the output, $y(n)$ by equation

$$
\begin{equation*}
y(n)=x(n) * h(n)=\sum_{k=-\infty}^{\infty} x(k) h(n-k) \tag{i}
\end{equation*}
$$

(b) Compute the output $y(n)$ by equation

$$
\begin{equation*}
y(n)=x(n) * h(n)=\sum_{k=-\infty}^{\infty} h(k) x(n-k) \tag{ii}
\end{equation*}
$$

Solution : By equation (i), we have

$$
y(n)=x(n) * h(n)=\sum_{k=-\infty}^{\infty} x(k) h(n-k)
$$

Sequences $x(k)$ and $h(n-k)$ are shown in figure 2.31(a) for $n<0$ and $n>0$. From figure 2.31(a) we observe that for $n<0, x(k)$ and $h(n-k)$ do not overlap, while for $n \geq 0$,
they overlap from $k=0$ to $k=n$. Hence, for $n<0, y(n)=0$. For $n \geq 0$, we have

$$
y(n)=\sum_{k=0}^{\infty} \mathrm{a}^{\mathrm{n}-\mathrm{k}}
$$

Changing the variable of summation k to $m=n-k$ and using equation (i), we have

$$
y(n)=\sum_{m=n}^{0} \alpha^{m}=\sum_{m=0}^{n} \alpha^{m}=\frac{1-\alpha^{n+1}}{1-\alpha}
$$

(a)

Fig. 2.31
Thus, we can write the output $y(n)$ as under :

$$
\begin{equation*}
y(n)=\left(\frac{1-\alpha^{n-1}}{1-\alpha}\right) u(n) \tag{iii}
\end{equation*}
$$

which has been sketched in figure 2.31(b)
(b) By equation (ii), we get

$$
y(n)=h(n) * x(n)=\sum_{k=-\infty}^{\infty} h(k) x(n-k)
$$

Sequences $h(k)$ and $x(n-k)$ are shown in figure 2.32, for $n<0$ and $n>0$. Again from figure 2.32 we see that for $n<0, h(k)$ and $x(n-k)$ do not overlap, while for $n>0$, they overlap from $k=0$ to $k=n$. Hence, for $n<0, y(n)=0$. For $y(n)>0$, we have

$$
y(n)=\sum_{k=0}^{n} \alpha^{k}=\frac{1-\alpha^{n+1}}{1-\alpha}
$$

Fig. 2.32

Exumple 2.35

Evaluate $y(n)=x(n) * h(n)$, where $x(n)$ and $h(n)$ are shown in figure 2.33 by an analytical technique

Fig. 2.33
Solution : Note that $x(n)$ and $h(n)$ can be expressed as under :

$$
\begin{aligned}
& x(n)=\delta(n)+\delta(n-1)+\delta(n-2)+\delta(n-3) \\
& h(n)=\delta(n)+\delta(n-1)+\delta(n-2)
\end{aligned}
$$

Now, we have

$$
\begin{aligned}
\mathrm{x}(\mathrm{n}) * \mathrm{~h}(\mathrm{n}) & =\mathrm{x}(\mathrm{n}) *\{\delta(\mathrm{n})+\delta(\mathrm{n}-1)+\delta(\mathrm{n}-2)\} \\
& =\mathrm{x}(\mathrm{n}) * \delta(\mathrm{n})+\mathrm{x}(\mathrm{n}) * \delta(\mathrm{n}-\mathrm{l})+\mathrm{x}(\mathrm{n}) * \delta(\mathrm{n}-2)\} \\
& =\mathrm{x}(\mathrm{n})+\mathrm{x}(\mathrm{n}-1)+\mathrm{x}(\mathrm{n}-2)
\end{aligned}
$$

Thus,

$$
\begin{aligned}
y(n)=\delta(n)+5(n-1) & +\delta(n-2)+\delta(n-3) \\
& +\delta(n-1)+\delta(n-2)+\delta(n-3)+\delta(n-4) \\
& +\delta(n-2)+\delta(n-3)+\delta(n-4)+\delta(n-5)
\end{aligned}
$$

or $y(n)=\delta(n)+2 \delta(n-1)+3 \delta(n-2)+3 \delta(n-3)+2 \delta(n-4)+\delta(n-5)$
or $y(n)=\{1,2,3,3,2,1\}$

Fig. 2.34

axpuple 2.36

Show that if the input $x(n)$ to discrete-time LTI system is periodic with period N, then the output $y(n)$ is also periodic with period No.
Solution : Let $\mathrm{h}(\mathrm{n})$ be the impulse response of the system. Then, we have.

$$
y(n)=\sum_{k=-\infty}^{\infty} h(k) x(n-k)
$$

Let

$$
\mathrm{n}=\mathrm{m}+\mathrm{N} .
$$

Then

$$
y(m+N)=\sum_{k=-\infty}^{\infty} h(k) x(m+N-k)=\sum_{k=-\infty}^{\infty} h(k) x((m-k)+N)
$$

Since $x(n)$ is period with period N. we have

$$
x[(m-k)+N]=x(m-k)
$$

Thus,

$$
y(m+N)=\sum_{k=-\infty}^{\infty} h(k) x(m-k)=y(m)
$$

which, indicates that the output $\mathrm{y}(\mathrm{n})$ is periodic with period N .

Exumple 2,3, 綯

Find the impulse response $h(n)$ for each of the causal LTI discrete-time systems satisfying the following difference equations and state whether each systems a FIR or an IIR system.
(a) $y(n)=x(n)-2 x(n-2)+x(n-3)$
(b) $y(n)+2 y(n-1)=x(n)+x(n-1)$
(c) $\quad y(n)-\frac{1}{2} y(n-2)=2 x(n)-x(n-2)$

Solution : (a) By definition, we have

$$
\begin{aligned}
& \text { have } \\
& h(n)=\delta(n)-2 \delta(n-2)+(n-3) \\
& h(n)=\{1,0,-2,1\}
\end{aligned}
$$

Since $h(n)$ has only four terms, the system is a FIR system.
(b) $h(n)=-2 h(n-1)+\delta(n)+\delta(n-1)$

Since the system is causal, $h(-1)=0$. Then

$$
\begin{aligned}
& h(0)=-2 h(-1)+\delta(0)+\delta(-1)=\delta(0)=1 \\
& h(1)=-2 h(0)+\delta(1)+\delta(0)=-2+1=-1 \\
& h(2)=-2 h(1)+\delta(2)+\delta(1)=-2(-1)=2 \\
& h(3)=-2 h(2)+\delta(3)+\delta(2)=-2(2)=-2^{2}
\end{aligned}
$$

Hence.
$h(n)=-2 h(h-1)+\delta(n)+\delta(n-1)=(-1)^{n} 2^{n-1}$

Since $h(n)$ has infinite terms, therefore the system is an IIR system.
$h(n)=\delta(n)+(-1)^{2}$ estem is an IIR system.
(c) $h(n)=\frac{1}{2} h(n-2)+2 \delta(n)-\delta(n-2)$

Since the system is causal, $h(-2)=h(-1)=0$.

Then

$$
\begin{aligned}
& h(0)=\frac{1}{2} h(-2)+2 \delta(0)-\delta(-2)=2 \delta(0)=2 \\
& h(1)=\frac{1}{2} h(-1)+2 \delta(1)-\delta(-1)=0 \\
& h(2)=\frac{1}{2} h(0)+2 \delta(2)-\delta(0)=\frac{1}{2}(2)-1=0 \\
& h(3)=\frac{1}{2} h(1)+2 \delta(3)-\delta(1)=0
\end{aligned}
$$

Hence, $h(n) \quad h(n)=2 \delta(n)$
Since (m) has only one term, therefore, the system is a FIR system.

Ex(IIn)le 2.38

Test if the following systems are stable or not.
(i) $y(n)=\cos x(n)$
(ii) $y(n)=\sum_{k=-\infty}^{n+1} x(k)$

(iii) $y(n)=a x(n)$
(iv) $y(n)=x(n) e^{n}$
(v) $y(n)=a^{\times(n)}$

Solution.

(i) Given $y(n)=\cos x(n)$

For the system to be stable, it has to satisfy the condition.

$$
\sum_{n=-\infty}^{\infty}|h(n)|<\infty
$$

If $x(n)=\delta(n)$, then the impulse response $h(n)=\cos \delta(n) . \quad \begin{array}{r}\delta(n)=1 \text { for } n=0 \\ \\ =0 \text { for } n \neq 0\end{array}$
For $\mathrm{n}=0 ; \mathrm{h}(0)=\cos \mathrm{l}=0.54$
For $\mathrm{n}=1 ; \mathrm{h}(1)=\cos 0=1$
For $n=2 ; h(2)=\cos 0=1$
For $n=-1 ; h(-1)=\cos 0=1$

$$
\begin{aligned}
\sum_{n=-\infty}^{\infty}|h(n)|= & |h(-\infty)|+\ldots .|h(-2)|+|h(-1)|+|h(0)| \\
& \quad+|h(1)|+1 h(2)|+\ldots| h(\infty) \mid \\
= & 1+1+\ldots 1+1+0.54+1+1+\ldots .1 \\
= & \infty
\end{aligned}
$$

The system is unstable.
(ii) $y(n)=\sum_{k=-\infty}^{n+1} x(k)$
$x(K) \rightarrow B L K$ $y(n)$

For the system to be stable $\sum_{k=-\infty}^{\infty}|\mathrm{h}(\mathrm{n})|<\infty$
For the given system

$$
h(n)=\sum_{k=-\infty}^{\infty} \delta(k)
$$

$$
n(n)=\sum_{k=-\infty}^{n+1} \partial(K)
$$

For $n=-2$

$$
h(-2)=\sum_{k=-\infty}^{-1} \delta(k)=0 \quad \begin{array}{r}
\delta(k)=0 \text { for } k \neq 0 \\
=1 \text { for } k=0
\end{array}
$$

For $n=-1$

$$
h(-1)=\sum_{k=-\infty}^{0} \delta(k)=1
$$

For $n=1$

$$
h(0)=\sum_{k=-\infty}^{0} \delta(k)=1
$$

For $\mathrm{n}=1$

$$
\begin{gathered}
h(1)=\sum_{k=-\infty}^{2} \delta(k)=1 \\
\sum_{n=-\infty}^{m}|h(n)|=\sum_{n=-1}^{\infty}|h(n)|=1+1+1 \ldots \infty=\infty
\end{gathered}
$$

The condition is not satisfied, therefore, the system is unsta
(iii) $y(n)=a x(n)$

The impulse response is given by

$$
\delta(n)=0 \text { for } n \neq 0
$$

$$
h(n)=a \delta(n)
$$

For $\mathrm{n}=-1$

$$
h(-1)=a \delta(-1)=0
$$

For $\mathrm{n}=0$

$$
h(0)=a \delta(0)=a
$$

For $n=1$

$$
h(1)=a \delta(1)=0
$$

$$
\begin{aligned}
& \sum_{n=-\infty}^{\infty}|\mathrm{h}(\mathrm{n})|=|\mathrm{h}(-\infty)|+\ldots|\mathrm{h}(-1)|+|\mathrm{h}(0)|+|\mathrm{h}(1)|+\ldots|\mathrm{h}(\infty)| \\
& = \\
& =0+0+\ldots 0+\mathrm{a}+0 \ldots 0 \\
& =
\end{aligned}
$$

The system is stable, if $|\mathrm{a}|<\infty$
(iv) $y(n)=x(n) e^{n}$

The impulse response is given by

$$
h(n)=\delta(n) e^{n}
$$

For $\mathrm{n}=-1$

$$
\begin{aligned}
\mathrm{h}(-1) & =\delta(-1) \mathrm{e}^{-1} \\
& =0
\end{aligned}
$$

For $n=0$

$$
h(0)=\delta(0) e^{0}=1
$$

For $n=1$

$$
h(1)=\delta(1) e^{\prime}=0
$$

$\sum_{n=-\infty}^{\infty}|h(n)|=|h(\infty)|+\ldots .|h(-1)|+|h(0)|+|h(1)|+\ldots|h(\infty)|$

$$
\begin{aligned}
& =0+\ldots+0+1+0+\ldots 0 \\
& =1<\infty
\end{aligned}
$$

Therefore, the system is stable.
(v) $y(n)=a^{x(n)}$

The impulse response is given by

$$
h(n)=a^{\delta(n)}
$$

For $n=0 ; h(0)=a^{8(0)}=a$
For $n=-1 h(-1)=a^{0}=1$
For $n=1 ; h(1)=a^{8(0)}=1$

$$
\begin{aligned}
& \sum_{n=-\infty}^{\infty}|h(n)|=|h(\infty)|+\ldots .|h(0)|+|h(1)|+|h(2)|+\ldots .|h(\infty)| \\
&=1+\ldots a+1+1+\ldots .1 \\
&=\infty
\end{aligned}
$$

The system is unstable.

Example 2.39

Find the discrete convolution of the following sequences
(a) $x(n)=\underset{\uparrow}{\{1,2,-1,1\}} h(n)=\underset{\uparrow}{\{1,0,1,1\}}$
(b) $u(n) * u(n-3)$
(c) $2^{n} u(-n+2) * u(n-3)$
(d) $\cos \left(\frac{\pi n}{2}\right) u(n) * u(n-1)$
(e) $x(n)=e^{-n^{2}} ; h(n)=3 n^{2}$

Solution

(a) The starting value of $\mathrm{n}=\mathrm{n}_{1}+\mathrm{n}_{2}$

$$
\begin{array}{r}
=0+(-1)=-1 \\
x(n)
\end{array}
$$

$y(n)=\{1,2,0,4,1,0,1\}$
(b) Let $x(n)=u(n)$ and $h(n)=u(n-3)$

$$
\begin{aligned}
y(n) & =x(n) * h(n) \\
& =\sum_{k=-\infty}^{m} x(k) h(n-k)
\end{aligned}
$$

We have

$$
x(k)=0 \text { for } k<0 \text { and }
$$

$$
h(n-k)=0 \text { for } k>n-3
$$

Therefore

$$
\begin{aligned}
y(n) & =\sum_{k=0}^{n-3} x(k) h(n-k)=\sum_{k=0}^{n-3} i=n=3+1=n-2 \\
& =\sum_{k=0}^{n-3} 1 \\
& =n-3-0+1=n-2
\end{aligned}
$$

(or)

$$
\begin{aligned}
y(n)= & x(n) * h(n) \\
& =\sum_{k=-\infty}^{\infty} h(k) x(n-k)
\end{aligned}
$$

we have

$$
\begin{aligned}
& h(k)=0 \text { for } k<3 \\
& x(n-k)=0 \text { for } k>n \\
& y(n)=\sum_{k=3}^{n} h(k) x(n-k) \\
&=\sum_{k=3}^{n} 1 \\
&=n-3+1=n-2 \\
& \text { (c) } 2^{n} u(-n+2) * u(n-3) \\
& \text { Let } x(n)=2^{n} u(-n+2) \text { and } \\
& h(n)=u(n-3) \\
& y(n)=x(n) * h(n) \\
&= \sum_{k=-\infty}^{\infty} x(k) h(n-k)
\end{aligned}
$$

$$
\text { For }-\infty \leq n \leq 5
$$

$h(n-k)=0$
for $k>n-3$

Fig. 2.36

$$
\begin{aligned}
y(n) & =\sum_{k=-\infty}^{n-3} 2^{k} \\
& =\left[2^{n-3}+2^{n-4}+\ldots\right] \\
& =2^{n-3}\left[1+\frac{1}{2}+\ldots\right] \\
& =2^{n-3} \cdot \frac{1}{1-\frac{1}{2}}=2^{n-2}
\end{aligned}
$$

For $\mathrm{n}>5$

$$
\begin{aligned}
y(n) & =\sum_{k=-\infty}^{2} 2^{k}=\left[2^{2}+2+1+\frac{1}{2} \cdots\right]=\frac{4}{1+\frac{1}{2}}=8 \\
& =\left[4+2+1+\frac{1}{2}+\cdots\right.
\end{aligned}
$$

(d) $x(n)=\cos \left(\frac{\pi n}{2}\right) u(n)$

$$
h(n)=u(n-1)
$$

The above sequences can be represented as

$$
\begin{aligned}
& \mathrm{x}(\mathrm{n})=\underset{\uparrow}{\{ } 1,0,-1,0,1,0,-1,0,1,0,-1, \ldots . .\} \\
& \mathrm{h}(\mathrm{n})=\underset{\uparrow}{\{0,1,1,1,1,1,1,1,1,1,1 \ldots\}}
\end{aligned}
$$

$$
x(n)
$$

$h(n)$

Given $x(k)=\cos \frac{\pi k}{2} u(k)$ and $h(n-k)=u(n-k-1)$

$$
\begin{aligned}
& x(k)=0 \text { for } k<0 \\
& h(n-k)=0 \text { for } k>n-1
\end{aligned}
$$

Therefore

$$
\begin{aligned}
y(n) & =\sum_{k=0}^{n-1} \cos \frac{\pi k}{2} \\
& =\operatorname{Real} \operatorname{part} \text { of }\left[\sum_{k=0}^{n-1} \mathrm{e}^{j \pi k / 2}\right] \\
& =\operatorname{Re}\left[1+\mathrm{e}^{\mathrm{j} \pi / 2}+\mathrm{e}^{\mathrm{j} \pi}+\ldots \mathrm{n} \text { terms }\right] \\
& =\operatorname{Re}\left[\frac{\mathrm{e}^{\mathrm{j} \pi / 2}-1}{\mathrm{e}^{j \pi / 2}-1}\right]=\operatorname{Re}\left[\frac{\mathrm{e}^{j \pi / 2}-1}{-1+\mathrm{j}}\right] \\
& =\operatorname{Re}\left[\frac{\left(\mathrm{e}^{\mathrm{j} \pi / 2}-1\right)(-1-\mathrm{j})}{2}\right]=\operatorname{Re}\left[\frac{-\mathrm{e}^{\mathrm{j} \pi / 2}+1-\mathrm{j}^{j \pi / 2}+\mathrm{j}}{2}\right] \\
& =\frac{1}{2} \operatorname{Re}\left[-\cos \frac{\pi \mathrm{n}}{2}-\mathrm{jsin} \frac{\pi n}{2}+1-\mathrm{j} \cos \frac{\pi n}{2}+\sin \frac{\pi n}{2}+\mathrm{j}\right] \\
& =\frac{1}{2}\left[1-\cos \frac{\pi n}{2}+\sin \frac{\pi n}{2}\right]
\end{aligned}
$$

(e) Given

$$
\begin{aligned}
& x(n)=e^{-n^{2}} ; h(n)=3 n^{2} \\
& y(n)=\sum_{k=-\infty}^{\infty} x(k) h(n-k)=\sum_{k=-\infty}^{\infty} e^{-k^{2}} 3(n-k)^{2} \\
& =3\left\{\sum_{k=-\infty}^{\infty} e^{-k^{2}} n^{2}+\sum_{k=-\infty}^{\infty} e^{-k^{2}}(-2 n k)+\sum_{k=-\infty}^{\infty} e^{-k^{2}} k^{2}\right\} \\
& =3\left\{\sum_{k=-\infty}^{\infty} e^{-k^{2}} n^{2}+\sum_{k=-\infty}^{\infty} e^{k^{2}}(-2 n k)+\sum_{k=-\infty}^{\infty} e^{-k^{2}} k^{2}\right\}
\end{aligned}
$$

$$
\left.\begin{array}{l}
=3\left\{n^{2} \sum_{k=-\infty}^{\infty} e^{-k^{2}}-2 n \sum_{k=-\infty}^{\infty} e^{k^{2}} k+\sum_{k=-\infty}^{\infty} k^{2} e^{-k^{2}}\right\} \\
\begin{array}{rl}
\sum_{k=-\infty}^{\infty} e^{-k^{2}} & =\ldots e^{-4}+e^{-1}+1+e^{-1}+e^{-4}+e^{-9}+\ldots \\
& =1+2\left(e^{-1}+e^{-4}+e^{-9}+\ldots\right) \\
& =1+2(0.3863) \\
& =1.7726
\end{array} \\
\begin{array}{rl}
\sum_{k=-\infty}^{\infty} e^{-k^{2}} & k=\ldots-3 e^{-9}-2 e^{-4}-1 e^{-1}+0+1 e^{-4}+2 e^{-4}+3 e^{-9}+\ldots \\
\quad= & 0 \\
\begin{array}{rl}
\sum_{k=-\infty}^{\infty} k^{2} e^{-k^{2}} & =\ldots 16 e^{-16}-9 e^{-9}-4 e^{-1}+e^{-1}+0+e^{-1}+4 e^{-4}+9 e^{-9}
\end{array} \\
\quad
\end{array} \\
\quad=2\left\{e^{-1}+4 e^{-4}+9 e^{-9}+16 e^{-16}+\ldots .\right\} \\
\quad=0.8845
\end{array}\right\}
$$

Example 2.40

Determine the stability of the system

$$
y(n)-\frac{5}{2} y(n-1)+y(n-2)=x(n)-x(n-1)
$$

Solution :
For the system to be stable

$$
\sum_{n=-\infty}^{\infty}|h(n)|<\infty
$$

Substituting $x(n)=0$ and $y(n)=\lambda^{n}$ in the difference equation we get

$$
\lambda^{n}-\frac{5}{2} \lambda^{n-1}+\lambda^{n-2}=0
$$

$$
\begin{align*}
& \lambda^{2}-\frac{5}{2} \lambda+1=0 \\
& \lambda_{1}=2 ; \lambda_{2}=\frac{1}{2} \\
& y(\mathrm{n})=C_{1}(2)^{n}+C_{2}\left(\frac{1}{2}\right)^{n} \tag{I}
\end{align*}
$$

For $\mathrm{n}=0$

$$
y(0)=C_{1}+C_{2}
$$

For $\mathrm{n}=1$

$$
\begin{equation*}
y(1)=2 C_{1}+\frac{1}{2} C_{2} \tag{II}
\end{equation*}
$$

From the difference equation we find

$$
\begin{align*}
& y(0)=1 \\
& y(1)=\frac{3}{2} \tag{III}
\end{align*}
$$

comparing Eq. (I), Eq. (II) and Eq.(III) we have

$$
\begin{aligned}
C_{1}+C_{2} & =1 \\
2 C_{1}=\frac{1}{2} C_{2} & =\frac{3}{2}
\end{aligned}
$$

Solving for C_{1} and C_{2} we obtain $\mathrm{C}_{1}=\frac{2}{3}$ and $\mathrm{C}_{2}=\frac{1}{3}$

$$
\left.h(n)=\frac{2}{3}(2)^{n}+\frac{1}{3}\left(\frac{1}{2}\right)^{n} \text { for } n \geq 0\right)
$$

$$
=\left[\frac{2}{3}(2)^{\mathrm{n}}+\frac{1}{3}\left(\frac{1}{2}\right)^{\mathrm{n}}\right] \mathrm{u}(\mathrm{n})
$$

For the system to be stable

$$
\sum_{n=-\infty}^{\infty}|h(n)|<\infty
$$

$$
\sum_{n=-\infty}^{\infty}|h(n)|=\sum_{n=0}^{\infty}\left|\frac{2}{3}(2)^{n}+\frac{1}{3}\left(\frac{1}{2}\right)^{n}\right|=\infty
$$

Therefore, the system is unstable.

SUCMMARY

1. Systems are broadly classified as continuous-time systems and discrete-time system. Continuous-time systems deal with continuous-time signals and discrete-time systems deal with discrete-time signals.
2. Both continuous-time and discrete-time systems have several basic properties. Out of these several basic properties of systems, two properties namely linearity and timeinvariance play a vital role in the analysis of signals and systems. If a system has both the linearity and time-invariance properties, then this system is called Linear-time Invariant System.
3. We study linear-time invariant systems because of the fact that most of the practical and physical processes around us can be modelled in the form of linear-time invariant systems.
4. Linear-time invariant systems may be analyzed in detail very easily and thus providing some fundamental aspects for the complex analysis of signals and systems.
5. Both continuous-time and discrete-time, linear-time-invariant (LTI) systems exhibit one important characteristics that the superposition theorem can be applied to find the response $y(t)$ to a given input $x(t)$.
6. To find the response of a LTI system to any given function first we have to find the response of LTI system to an unit impulse called unit impulse response of LTI system.
7. The impulse response of a continuous-time or discrete-time LTI system is the output of the system due to an unit impulse input applied at time $t=0$ or $n=0$. Here, $\delta(t)$ is ihe unit impulse input in continuous-time and $h(t)$ is the unit-impulse response of continuous-time LTI system. In other words, continuous-time unit-impulse response $h(t)$ is the output of a continuous-time system when applied input $x(t)$ is equal to unit impulse function $\delta(t)$.
8. For a discrete-time system, discrete time impulse response $h(n)$ is the output of a discretetime system when applied input $x(n)$ is equal to discrete-time unit impulse function $\delta(n)$. Here, $\delta(n)$ is the unit-impulse input in discrete-time and $h(n)$ is the unit-impulse response of discrete-time LTI system.
9. Therefore, any LTI system can be completely characterized in terms of its unit impulse response.
10.

The discrete-time output signal $y(n)$ of this system may be expressed as

$$
y(n)=\sum_{n=-\infty}^{\infty} x(k) h(n-k)
$$

The above expression for discrete-time output signal $y(n)$ is called the convolution sum as against the convolution integral for continuous-time LTI system.
11. The LT systems have a number of properties not exhibited by other systems. These are as under:
(i) Commutative property of LTI systems.
(ii) Distributive property of LTI systems
(iii) Associative property of LTI systems.
(iv) Static and dynamic LTI systems
(v) Invariability of LTI systems
(vi) Causality of LTI systems
(vii) Stability of LTI systems
(viii) Unit-step response of LTI systems
13. According to commutative property, for a discrete-time system.

The output

$$
\begin{aligned}
& y(n)=x(n) * h(n)=\sum_{k=-\infty}^{\infty} x(k) h(n-k) \\
& y(n)=h(n) * x(n)=\sum_{k=-\infty}^{\infty} h(k) x(n-k)
\end{aligned}
$$

15. For discrete-time LTI system, the distributive property is expressed as
E. The output $\mathrm{y}(\mathrm{n})=\mathrm{x}(\mathrm{n}) *\left\{\mathrm{~h}_{1}(\mathrm{n})+\mathrm{h}_{2}(\mathrm{n})\right\}$

$$
y(n)=x(n) * h_{1}(n)+x(n) * h_{2}(n)
$$

17. Static systems are also known as memoryless systems. A system is known as static if its output at any time depends only on the value of the input at the same time.
18. A system is known as invertible only if an inverse system exists which, when cascaded (connected in series) with the original system, produces an output equal to the input at first system. If an LTI system is invertible theh it will have a LTI inverse system.

QUESTIONS AND ANSWERS

What do you understand by the terms: signal and signal processing. independent variable.
Signal processing is any operation that changes the characteristics of a signal. These characteristics include the amplitude, shape, phase and frequency content of a signal.

What is Deterministic signal? Give example.

A Deterministic signal is a signal exhibiting no uncertainty of value at any given instant of time. Its instantaneous value can be accurately predicted by specifying a formula, algorithm or simply its describing statement in words.
Example: $\mathrm{v}(\mathrm{t})=\mathrm{A}_{0} \sin \omega \mathrm{t}$

Q. 3 What is random signal?

A random signal is a signal characterized by uncertainty before its actual occurrence. Example: Noise
Q. 4 Define (a) Periodic signal (b) Non-periodic signal.

Ans A signal $x(n)$ is periodic with period N if and only if $x(n+N)=x(n)$ for all n.
If there is no value of N that satisfies the above equation the signal is called nonperiodic or aperiodic.

Q. 5 Define the following

(a) Analog signal
(b) Discrete-time signal (c) Digital signal

Ans (a) An analog signal is a function having an amplitude varying continuously for all values of time. Hence, an analog signal is continuous in both time and amplitude.
Examples of analog signals are the sinusoidal function, the step function, output from a microphone.
(b) A discrete-time signal is a function defined only at particular time instants. It is discrete in time but continuous in amplitude. An example is temperature recorded at regular intervals of time in a day.
(c) A digital signal is a special form of discrete-time signal which is discrete in both time and amplitude, obtained by quantizing each value of the discrete-time signal. These signals are called digital because their samples are represented by numbers or digits. Examples of digital signals include the dot-dash Morse code, the output from a digital computer etc.
Q. 6 Give the analytical and graphical representation of an arbitrary sequence.

Ans Graphical representation of an arbitrary sequence is given by

We can write any arbitrary sequence $x(n)$ into a sum of unit sample sequence. If W_{c} multiply two sequences $x(n)$ and delayed unit impulse $\delta(n-k)$, the result is another sequence that is zero everywhere except at $n=k$, where its value is $x(k)$. Thus

$$
x(n) \delta(n-k)=x(k) \delta(n-k)
$$

If we repeat this multiplication over all possible delays, $-\infty<\mathrm{k}<\infty$, and sum all the product sequences, the result will be a sequence equal to the sequence $x(n)$, that is

$$
x(n)=\sum_{k=-\infty}^{\infty} x(k) \delta(n-k)
$$

Q. 7 What are the different types of operations performed on discrete-time signals?

Ans The different types of operations performed on discrete-time signals are
(1) Delay of a signal (2) Advance of a signal (3) Folding or reflection of a signal (4) Time
Q. 8 What is the pride scaling (6) Addition of signals (7) Multiplication of signals.

What is the property of shift-invariant system?

(or)

What is a time-invariant system?

(or)

What is a shift-invariant system? Give an example.

Ans If the input-output relation of a system does not vary with time, the system is said to be output signal of a system shifts k units of time upon delaying the input signal by k mple: $y(n)=x(n)+x(n-1)$ is a time-invariant system.

What is a causal system? Give an example.

(or)

What is a causal system?
A system is said to be causal if the output of the system at any time n depends only on present and past input, but does not depend on future inputs.
This can be represented mathematically as

$$
y(n)=F[x(n), x(n-1), x(n-2) \ldots]
$$

Example: $\mathrm{y}(\mathrm{n})=\mathrm{x}(\mathrm{n})+\mathrm{x}(\mathrm{n}-1)$

$$
y(n)=\sum_{k=-\infty}^{n} x(k)
$$

What is an LTI system?
An LTI system is one which possess two of the basic properties linearity and timeinvariance.
Linearity: An LTI system obeys superposition principle which states that the output of the system to a weight sum of inputs is equal to the corresponding weighted sum of the outputs to each of the individual inputs.
Time invariance: If the input-output relation of a system does not vary with time, the system is said to be time-invariant.
Q.1 Define unit sample response (impulse response) of a system and what is its significance.

Ans
The response or output signal designated as $h(n)$, obtained from a discrete-time system when the input signal is a unit sample sequence (unit impulse), is known as the unit sample response (impulse response).
The output $y(n)$ of an LTI system for an input signal $x(n)$ can be obtained by convolving the impulse response $h(n)$ and the input signal $x(n)$.

$$
\begin{aligned}
& y(n)=x(n) * h(n) \\
& =\sum_{k=-\infty}^{\infty} x(k) h(n-k)
\end{aligned}
$$

Q. 12 What is causality condition for an LTI system?

Ans The necessary and sufficient condition for causality of an LTI system is, its unit sample response $h(n)=0$ for negative values of n ie.

Q. 13 What is condition for system stability?

(or)
What is the necessary and sufficient condition on the impulse response for stability? Ans The necessary and sufficient condition guaranteing the stability of a linear time-invarian system is that its impulse response is absolutely summable

$$
\text { i.e., } \sum_{k=-\infty}^{\infty}|h(k)|<\infty
$$

Q. 14 What do you understand by linear convolution?

(or)

What is meant by discrete convolution?

Ans The convolution of discrete-time signals is known as discrete convolution. Let $\mathrm{x}(\mathrm{n})$ be the input to an LTI system and $y(n)$ be the output of the system. Let $h(n)$ be the response of the system to an impulse. The output $y(n)$ can be obtained by convolving the impulse response $h(n)$ and the input signal $x(n)$

$$
y(n)=\sum_{k=-\infty}^{\infty} x(k) h(n-k) \text { (or) } y(n)=\sum_{k=-\infty}^{\infty} h(k) x(n-k)
$$

The above equation that gives the response $y(n)$ of an LTI system as a function of the input signal $x(n)$ and the impulse response $h(n)$ is called a convolution sum.

Q. 15 What are FIR and IIR systems?

Ans FIR system: This type of system has an impulse response which is zero outside a finite time interval.

Example: $\mathrm{h}(\mathrm{n})=0$, for $\mathrm{n}<0$ and $\mathrm{n}>\mathrm{N}$
IIR system: An IIR system exhibits an impulse response of infinite duration.

Q. 16 What is the property of recursive and non recursive systems?

Ans Recursive system: This type of system has the property that output $y(n)$ at time n is a function of any number of past outputs

$$
\begin{aligned}
& y(n-1), y(n-2), \ldots y(n-N) \text { as well as present and past inputs } \\
& x(n), x(n-1), x(n-2) \ldots x(n-N) . \\
& \text { i.e., } y(n)=T[x(n), x(n-1), \ldots x(n-N), y(n-1), y(n-2) \ldots y(n-N)] \\
& \text { recursive system: In this kind of system }
\end{aligned}
$$

Non recursive system: In this kind of system, the output $y(n)$ depends ondy on the present
and past input signal values, i.e.,

$$
y(n)=T[x(n), x(n-1), x(n-2), \ldots x(n-N)]
$$

Q. 17 A causal system is one whose impulse response $h(n)=0$ for $n<0$. True/False

Ans True
Q. 18 A recursive system described by a linear constant difference equation is linear and time-in variant. True/False

Ans True
Q. 19 A linear system is stable if its impulse response is absolutely summable, True/Fatse Ans True
Q. 20 How you can find step response of a system if the impulse response $h(n)$ is known? Ans We have

$$
\begin{aligned}
y(n) & =x(n) * h(n) \\
\text { For input } x(n) & =u(n) \\
y(n) & =u(n) * h(n) \\
= & \sum_{k=-\infty}^{\infty} u(n-k) h(k) \\
= & \sum_{k=-\infty}^{n} h(k)
\end{aligned}
$$

$$
\because y(n-k)=0 \text { for } k>n
$$

Q. 21 Determine the unit step response of the LTI system with impulse response $\mathbf{h}(\mathbf{n})=\mathbf{a}^{\mathrm{n}} \mathbf{u}(\mathrm{n})|\mathbf{a}|<\mathbf{1}$.

Ans Unit step response

$$
\begin{aligned}
y(n) & =\sum_{k=-\infty}^{n} h(k) \\
& =\sum_{k=0}^{n} a^{k} \\
& =\frac{1-a^{n+1}}{1-a}
\end{aligned}
$$

Q.22 Define Fourier transform of a sequence.

Ans The Fourier transform of a finite energy discrete-time signal $x(n)$ is defined as

$$
X\left(e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} x(n) e^{-j \omega n}
$$

$\operatorname{Dsp}(Z$-trans form $) \quad 14-2-2020$

Input

output

$$
H(z)=z[h(n)]=\sum_{n=-\infty}^{\infty} h(n) \cdot z^{-n}
$$

If input is $x(n)$ Then $i t^{\prime} s \quad z$-T ra. nstorm is $z[x(n)]=x(z)=\sum_{n=-\infty}^{\infty} x(n) \cdot z^{-n}$
ROC: Region of convergence of $x(z)$ is set of all the values of z for which $x(z)$ has finite value.

$$
z=\pi \cdot e^{j,} \quad r=\text { Radius of } \quad \text { the circle }
$$ the circle

In z-domain
\rightarrow If $x(n)$ is causal signal ie. $x(n)=0$ for $n<0$, then The. z-Trans form is

$$
x(z)=\sum_{n=0}^{\infty} x(n) \cdot z^{-n}
$$

Here it is one sided z-Transforen. It contains negative powers (-ve) of z in $x(z)$ expression.
\rightarrow If $x(n)$ is noncausal Discrete Time signal ie. $x(n)=0$ for $n>0$ Then its z-Trans form is

$$
z[x(n)]=x(z)=\sum_{n=-\infty}^{-1} x(n) \cdot z^{-n}
$$

It contains positive powers(tre) of z in above expression. It is also one sided z-Treansform.

\rightarrow If $x(n) \equiv u(n)$.

$$
\begin{aligned}
& x(z)=\sum_{n=0}^{\infty} v(n) \cdot z^{-n} \\
& =v(0) \cdot z^{-0}+v(1) \cdot z^{-1}+v(2) \cdot z^{-2} \\
& +u(3) \cdot z^{-3}+\cdots \cdots \\
& =1 \cdot 1+1 \cdot z^{-1}+1 \cdot z^{-2}+1 \cdot z^{-3}+\cdots \\
& \equiv 1+\left(z^{-1}\right)^{1}+\left(z^{-1}\right)^{2}+\left(z^{-1}\right)^{3}+\cdots \cdot \\
& =1+x+x^{2}+x^{3}+\cdots \quad\left[x=z^{-1}\right] \\
& \begin{aligned}
\equiv \frac{1}{1-x}=\frac{1}{1-z^{-1}}=\frac{1}{1-\frac{1}{z}}=\frac{1-1}{z-1} \\
=\frac{z-1}{z} \underbrace{\frac{1}{z}}_{\text {Scanned by CamScanner }}
\end{aligned}
\end{aligned}
$$

$$
z[v(n)]=\frac{z}{z-1}
$$

here zero is $z=0$
Here pole is $z=1$

Here region Of convergence (ROC) is $|E|>1$
\rightarrow pole:- It z-Transform of $\overline{x(n)}$ is $\times(z)$. The value of z fore which $x(z)$ will be infinite is called pole.
\Rightarrow zero:- The value of z fore which $\overline{\overline{x(z)} \text { will be zero (0) is called }}$ zero:

$$
\begin{aligned}
x(n) & =\{1, \dot{z}, 3\}^{\text {gere }} \text { find } x(z) \\
x(z) & =\sum_{n=-\infty}^{\infty} x(n) \cdot z^{-n}=\sum_{n=-1}^{1} x(n) \cdot z^{-n} \\
& =x(-1) \cdot z^{-(-1)}+x(0) \cdot z^{-0}+x(1) \cdot z^{-1} \\
& =1 \cdot z^{1}+2 \cdot+3 \cdot z^{-1}
\end{aligned}
$$

fire $R O C$ is all values of z except: $z=0$ and $z=\infty$..

$$
=x-x+\cdots
$$

$$
0 \rightarrow Z E R
$$

(1) causal Inf incite duration

$$
x \rightarrow \text { pole }
$$ signal:-

$$
z[v(n)]=\frac{z}{z-1}
$$

Rocif outside of outerenost pole

(1) $Z[\sigma(n)]=1$
(3) If $E[x(n)] \equiv x(z)$ then
(3)

$$
z[8(n-1))]=Z .
$$

$$
z-k \cdot z\left[\frac{B}{-s}\right], z=0
$$

(4) $Z[0(n+K)]=Z^{K} \cdot Z[B(n)]=Z^{k} \cdot 1=Z^{k}$

ROC:- Entire z-plane except $Z=\infty$.

$$
\begin{aligned}
& Z[x(n-k)]=E^{-k} \cdot X(Z),
\end{aligned}
$$

Que:- Determine the z-Trans for em and $R O C$ of the signal $x(n)$

$$
=a^{n} \cdot u(n)
$$

sol:causal and cnefincte duration.

$$
\begin{aligned}
& \text { duration, } \\
& x(z)=\sum_{n=-\infty}^{\infty} x(n) \cdot z^{-n}=\sum_{n=0}^{\infty} x(n) \cdot z^{-n} \\
& =\sum_{n=0}^{\infty} a^{n} \cdot v(n) \cdot z^{-1} \quad u(n)=1 ; \\
& =\sum_{n=0}^{\infty} a^{n} \cdot z^{-n}
\end{aligned}
$$

$$
=\sum_{n=0}^{\infty=0}\left(a z^{-1}\right)^{n}
$$

$$
x^{0}+x^{1}+x^{2}+x^{3}+x^{4}+\cdots
$$

$$
=\frac{1}{1-x}=\frac{1}{1-a z^{-1}}
$$

$$
=\frac{1}{1-\frac{a}{z}}=\frac{1}{\frac{z-a}{z}}
$$

$$
=\sqrt{\frac{z}{z-a}}
$$

for inctinite duration causal signal, the ROC is out ede of outer most pole.
here one pole $z=a$

ZERO at $z=0$, poLE at $z=a$
ROc:- $|z|>a$

Que:- Find the Z-Transform and the
$R O C$ of the signal

$$
x(n)=-b^{n} \cdot v(-n-1)
$$

Sorn $n: \quad u(-n-1)=1$, for $n \leqslant-1$
$=0$, for $n \geqslant-1$

$$
\begin{aligned}
\text { putin } & =-1, \Rightarrow v[-(-1)-1]=\cup[1-1] \\
\text { put } n & =-2, \Rightarrow \cup[-(-2)-1]=\cup[2-1]=v(1) \\
x(z) & =z[x(n)]=\sum_{n=-\infty}^{\infty} x(n) \cdot z^{-n}=1 \\
& =\sum_{\infty}^{\infty}-b^{n} \cdot \dot{v}(-n-1) \cdot z^{-n} \\
& =-\infty \\
& =-\sum_{n=-\infty}^{-1} b^{n} \cdot z^{-n}=-\sum_{n=1}^{\infty} \frac{1}{b^{n} \cdot z^{-n}}
\end{aligned}
$$

$$
\begin{aligned}
& =-\sum_{n=1}^{\infty} b^{-n} \cdot z^{n}=-\sum_{n=1}^{\infty}\left(b^{-1} z\right)^{n} \\
& =-\left[\sum_{n=1}^{\infty}\left(b^{-1} z\right)^{n}+\left(b^{-1} z\right)^{0}-\left(b^{-1} z\right)^{0}\right] \\
& =-\left[\sum_{n=0}^{\infty}\left(b^{n} z\right)^{n}-1\right] \\
& =-\left[\frac{1}{1-x}-1\right] \\
& =-1\left[\frac{1}{1-b^{-1} z} \div 1\right]=-\left[\frac{1}{1-\frac{z}{b}}-1\right] \\
& =-\left[\frac{1}{\frac{b-z}{b}}-1\right]=-\left[\frac{b}{b-z}-1\right] \\
& =1-\frac{b}{b-z}=\frac{b-z-b}{b-z}=\frac{-z}{b-z} \\
& R O C: b-z>1 \Rightarrow b>z \Rightarrow z<b
\end{aligned}
$$

The ROC is now the interior of a circle having radius $\sqrt{\sim}$.

$18-2-200$
Z-TRAN FORM:-

$$
\begin{aligned}
& Z \text {-TRANSFORM:- } \\
& \begin{aligned}
Z \cdot\left[a^{n} \cdot v(n)\right]=\frac{1}{1-a z^{-1}}, & =\frac{z}{z a} \\
Z\left[-a^{n} \cdot u(-n-1)\right] & \equiv \frac{1}{1-a z^{-1}}, R D C:|Z|<a \\
& \frac{Z}{z-a}
\end{aligned}
\end{aligned}
$$

ROC of Two sided sequence:-
4 The Roc of a causal signal is exterior of a circle of radius re. The roc of a an ticausal signal is interior of a circle of radius re.
wet un consider a Two side of sequence is

$$
\begin{aligned}
& x(n)=a^{n} \cdot v(n)+b^{n} \cdot v(-n-1) \\
& X(z)=\frac{1}{1-a z^{-1}}-\frac{1}{1-b z^{-1}} \\
& \downarrow \\
& \downarrow \quad \text { ROC: }
\end{aligned}
$$

kOC:|z|>a, ROC:|z|<b
So combined ROG is

$$
a<|z|<b
$$

Stability and ROC：－
$y(n)=x(n) * ⿻ 丷 木(n) \underset{x(n)}{\text { system }} \rightarrow y(n)$
Let $h(n)$ is the impulse Response of a causal（are）Noncausal Linear Tine invariant system and $H(z)$ be the z－Transform of $h(n)$ ．Then stability of the system can be found tron $R O C$ using the following theorem． Theorem：－，AnLTI System with the system function $H(z)$ is BIBO stable（Bounded input Bounded output）it and only if the ROC fore $H(z)$ contains the unit circle Que：－Find the stability of the system whose impulse Response $\begin{array}{ll}\text { Q } & h(n)=(2)^{n} \cdot v(n) \\ \text { son：－} & H(z)=z\left[(2)^{n} \cdot v(n)\right]\end{array}$
Here，Theroc is $=\frac{1}{1-2 \cdot z^{-1}}=\frac{z}{z^{-2}} \begin{aligned} & \text { ROC is } \\ & (z)>2 \\ & \text { zn cz })\end{aligned}$ ｜z｜＞よ．It does not contain the unitcircle． Therefore the system is unstable．

properties of z－Transforen：－
（1）Lincarity！ If $z\left[x_{1}(x)\right] \equiv x_{1}(z) ; \cdot$
$Z\left[x_{2}(n)\right]=x_{2}(z) ; R \circ c=R_{2}$
Thin $x(n)=a \cdot x_{1}(n)+b \cdot x_{2}(n)$ having z－Trans form is
$E[x(n)]=x(z)=a \cdot z\left[x_{1}(n)\right]+b \cdot z\left[x_{2}(n)\right]$
$R O C \subset S: R_{1} \cap R_{2}$
a, b are constants
Que：－The signal is given by $x(A)=$ $\left[2\left(3^{n}\right)-3\left(4^{n}\right)\right] \cup(1)$
Determine．Z－Transform using
Sol：－Linearity properity．$\quad x(n)=2(3)^{?} \cup(n)-3(4)^{?} \cdot \cup(n)$ $E[x(1)]=x(z)=2 E\left[(3)^{n} \cup(n)\right]-3 \cdot z[(4) ? \cup(n)]$
$=2 \cdot \frac{1}{1-3 \cdot Z^{-1}}-3 \cdot \frac{1}{1-4 \cdot Z^{-1}}$
$=2 \cdot \frac{z}{z-3}-3 \cdot \frac{z}{z-4}$
$R \circ C\left(R_{1}\right):|z|>3 \quad \operatorname{ROC}\left(R_{2}\right):|z|>4$

R, \cap RR IS $\operatorname{ROC}(Z)^{\prime}>4$ The intersection of ROC of $x_{1}(z)$ and $x_{2}(z)$ is $|z|>4$.

$$
x(z)=\frac{1}{\left(1-\frac{1}{2} z^{-1}\right) \cdot\left(1-\frac{1}{4} z^{-1}\right)},
$$

ROC: $|z|>\frac{1}{2},|z|>\frac{1}{4}$. Determine $x(n)$.
sol:- $x(z)=\frac{1}{\left(1-\frac{1}{2} z^{-1}\right)\left(1-\frac{1}{4} z^{-1}\right)}$

$$
=\frac{A}{1-\frac{1}{2} z^{-1}}+\frac{B}{1-\frac{1}{4} z^{-1}}
$$

$$
\begin{aligned}
& A=\lim _{z^{-1} \rightarrow 2}\left(1-\frac{1}{2} z^{-1}\right) \cdot x(z) \\
& \left.=\lim _{z^{-1} \rightarrow 2}\left(1-\frac{1}{2}\right) z^{-1}\right) \cdot \frac{1}{\left(1-\frac{1}{2} z^{-1}\right)\left(1-\frac{1}{4} z^{-1}\right)} \\
& =\frac{1}{1-\frac{1}{4} \times 2}=\frac{1}{1-\frac{1}{2}}=\frac{1}{\frac{1}{2}} \\
& B=\lim _{z^{-1} \rightarrow 4}\left(1-\frac{1}{4} z^{-1}\right) \cdot x(z)=2 \\
& =\lim _{z^{-1} \rightarrow 4}\left(1-\frac{1}{4} z^{-1}\right) \cdot \frac{1}{\left(1-\frac{1}{2} z^{-1}\right)\left(1-\frac{x}{4} z^{-7}\right)} \\
& =\lim _{z^{-1} \rightarrow 4} \frac{1}{1-\frac{1}{2} \cdot z^{-1}}=\frac{1}{1-\frac{1}{2} \times 4}=\frac{1}{1-2} \\
& =\frac{1}{100 \cot (-1)} \equiv-\frac{-1}{-1} \\
& X(z)=\frac{2 \cdot \frac{1}{1-\frac{1}{2} z^{-1}}}{}-1 \cdot \frac{1}{1-\frac{1}{4} \cdot z^{-1}} \\
& \begin{aligned}
z^{-1}[X(z)] & =x(n) \\
& =2 \cdot z^{-1}\left[\frac{1}{1-\frac{1}{2} \cdot z^{-1}}\right]-1 \cdot z^{-1}\left[\frac{1}{1-\frac{1}{4} \bar{z}^{-1}}\right]
\end{aligned} \\
& =2 \cdot\left(\frac{1}{2}\right)^{n} u(n)-\left(\frac{1}{4}\right)^{n} \cdot u(n) \\
& \begin{aligned}
z^{-1}\left[a^{n} \cdot u(n)\right] & =z^{-1}\left[-a^{n} \cdot u(-n-1)\right] \\
& =\frac{1}{1-a \cdot z^{-1}}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& z[x(n-k)]=z^{-k} x(z) \\
& \frac{p r 006=}{z[x(n)]}=x(z)=\sum_{n=-\infty}^{\infty} x(n) \cdot z^{-n} \\
& p \cup t n-k=l \\
& z[x(n-k)]=z[x(l)]=\sum_{l=-\infty}^{\infty} x(l) \cdot z^{-l} \\
& =\sum_{l=-\infty}^{\infty} x(l) \cdot z^{-(n-k)}
\end{aligned}
$$

Digital signal processing
Que- $x(n)=\cos u n \cdot v(n)$, find z-Treansform.

$$
\begin{aligned}
& \text { Sol : } \quad x(n)=\operatorname{cosin} \cdot \mathrm{v}(n) \text { junn } \\
& =\frac{1}{2} \cdot\left[e^{\text {jwn }}+e^{\text {-jwn't }}\right] u(n) \\
& =\frac{1}{2} \cdot e^{j w n} \cdot v(n)+\frac{1}{2} \cdot e^{-j w n} \cdot v(n) \\
& =\frac{1}{2} x_{1}(n)+\frac{1}{2} x_{2}(n) \\
& x(z)=\frac{1}{2} \cdot x_{1}(z)+x_{2}(z) \cdot \frac{1}{2} \\
& x_{1}(z)=\sum_{n=-\infty}^{\infty} x_{1}(n) \cdot z^{-n} \\
& \therefore=\sum_{n=-\infty}^{\infty} e^{j \cdot i n} \cdot v(n) \cdot z^{-n} \quad \begin{array}{l}
v(n)=1 ; \\
t_{n} ; 0
\end{array} \\
& =\sum_{n=0}^{\infty} e^{j u n} \cdot 1 \cdot z^{-n} \\
& \therefore=\sum_{n=0}^{\infty}\left(e^{j w} \cdot z^{-1}\right)^{n} \quad \begin{array}{l}
1+a+a^{2}+a^{3}+\cdots \\
=\frac{1}{1-a}
\end{array} \\
& =\frac{1}{1-e^{j \omega} \cdot z^{-1}} \\
& x_{2}(z)=\sum_{n=0}^{\infty} e^{-j \omega n} \cdot z^{-n}=\sum_{n=0}^{\infty}\left(e^{-j \omega} z^{-1}\right)^{n} \\
& 1-e^{-j \omega} \cdot z^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& x(z)=\frac{1}{2} \cdot x_{1}(z)+\frac{1}{2} \cdot x_{2}(z) \\
& =\frac{1}{2} \cdot\left[\frac{1}{1-e^{j \omega} \cdot z^{-1}}+\frac{1}{1-e^{-j \omega} \cdot Z^{-1}}\right] \\
& =\frac{1}{2} \cdot\left[\frac{1-e^{-j \omega} \cdot z^{-1}+1-e^{j \omega} \cdot z^{-1}}{\left(1-e^{j \omega} \cdot z^{-1}\right)\left(1-e^{-j \omega} \cdot Z^{-1}\right)}\right] \\
& =\frac{1}{2} \cdot\left[2-e^{j \omega z^{-1}}-e^{-j \omega} z^{y}\right. \\
& \frac{2}{i-e^{-j \omega} \cdot z^{-1}-e^{j \omega} z^{-1}+e^{j w} \cdot z^{-1}} \\
& 1.2\left[1-z^{-1}\left(e^{j \omega}+e^{-j \omega}\right) e^{-j \omega} \cdot z^{-\eta}\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\frac{1-z^{-1} \cdot \cos \omega}{1-z^{-1} \cdot 2 \cdot \cos \omega+z^{-2}}\right]=\frac{e^{j}+e^{-j \omega}}{2} \\
& =\left[\frac{1-z^{-1} \cdot \cos w}{1-2 z^{-1} \cdot \cos w+z^{-2}}\right] \\
& =\mathbb{Z}[\cos \omega n \cdot(n)]
\end{aligned}
$$

TIME SHIFTING
If $Z[x(n)]=x(z)$ then

$$
\begin{aligned}
& Z[x(n-k)]=z^{-k} \cdot x(z) \\
& Z[x(n)]=z^{k} \cdot x(z) \\
& Z[x(n+k)]
\end{aligned}
$$

Que :

$$
\begin{aligned}
\theta_{0}^{0} & x_{1}(n)=\left\{\begin{array}{l}
1,2,3 \\
1,
\end{array}\right. \\
x(z)= & \sum_{n=0}^{4} x_{1}(n) \cdot z^{-n} \\
= & x_{1}(0) \cdot z^{-0}+x_{1}(1) \cdot z^{-1}+x_{1}(2) \cdot z^{-2} \\
& +x_{1}(3) \cdot z^{-3}+x_{1}(4) \cdot z^{-4} \\
= & 1 \cdot z^{-0}+2 \cdot z^{-1}+3^{-2}+z^{-2}+4 \cdot z^{-3} \\
& +5 \cdot z^{-4} \\
= & 1+2 z^{-1}+3 z^{-2}+4 \cdot z^{-3}+5 \cdot z^{-4} \\
& \text { entire z-planeexcet }
\end{aligned}
$$

$R O C$: Entire Z-plane except

$$
z=0
$$

$$
x_{2}(n)=\{1,2,3,4,5\}
$$

$$
=x_{1}(n+2)
$$

$$
\begin{aligned}
&=x_{1}(n+2) \\
& x_{2}(z)=z^{2}\left[x_{1}(n+2)\right]=z^{2} \cdot x_{1}(z) \\
&=z^{2} \cdot\left[1+2 z^{-1}+3 z^{-2}+4 \cdot z^{-3}+5 \cdot z^{-4}\right] \\
& \text { Roc: Entire } z=z^{2}+3 \text {-plane except } z=0 \text { and } z=0 .
\end{aligned}
$$

Roc:-Entire z -plane except $z=0$ and $z=\infty$.

$$
\begin{aligned}
x_{3}(n) & =\left\{\begin{array}{l}
0,0,1,2,3,4,5 \\
\\
\end{array}=x_{1}(n-2)\right. \\
x_{3}(z) & =z^{-2}\left[x_{3}(n)\right]=z\left[x_{1}(n-2)\right] \\
& =z^{-2} \cdot x_{1}(z) \\
& =z^{-2}\left[1+2 z^{-1}+3 z+4+z^{-3}+5 \cdot z^{-4}\right] \\
& =z^{-2}+2 \cdot z^{-3}+3 z^{-4}+4 \cdot z+5: z^{-6}
\end{aligned}
$$

ROC: Entire z-plane except $z=0$.

$$
x-x-x-
$$

TIME REVERSAL:-

$$
\text { If } x(n) \stackrel{Z}{\longleftrightarrow} X(z), R O C^{r}<\|Z\|<r_{2}
$$

$$
\begin{aligned}
& \text { Then } \\
& x(-n) x\left(z^{-1}\right), R O C: \\
& \frac{1}{r_{2}}<|z|<\frac{1}{r_{1}}
\end{aligned}
$$

$\frac{\text { Que:- }}{\text { Z }} x(n)=a^{-n} \cdot u(-n)$, find z-Transforen by using time pereresal property s.
Sot

$$
\begin{aligned}
& \left.\frac{n_{n}}{x_{1}(n)}\right]=\frac{1}{1-a \cdot z^{-1}} \\
& z\left[x_{1}(-n)\right]=x,\left(z^{-1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& z\left[a^{-n}, u(-n)\right]=\frac{1}{1-a \cdot\left(z^{-1}\right)^{-1}} \\
& s=\frac{\sqrt{\frac{1}{1-a \cdot z}}}{\forall_{R \circ C}: \left\lvert\, z / \& \frac{1}{a}\right.}
\end{aligned}
$$

SCALING IN Z-DOMAIN:-
If $z[x(n)]=X(z)$ Then

$$
\begin{aligned}
& z\left[a^{n} \cdot x(n)\right]=x\left(a^{-1} z\right) \rightarrow R O c: \\
&|a| r\left|<|z|<|a| \pi_{2}\right.
\end{aligned}
$$

Que: If $x(n)=a^{n} \cdot \sin \omega_{0} n \cdot v(n)$
Then find its z-Transform:

$$
\begin{aligned}
& \text { Then find ce } \\
& \text { son: } Z\left[\sin \omega_{0} n \cdot v(n)\right]=z^{-1} \cdot \sin \omega_{0} \\
& 1-2 z^{-1} \cdot \cos \omega_{0}+z^{-2}
\end{aligned}
$$

$z\left[a s^{n} \cdot \sin \omega_{0} n \cdot v(n)\right]$

$$
\begin{aligned}
& z \\
& =\frac{\left(a^{-1} z\right)^{-1} \cdot \sin \omega_{0}}{1-2\left(a^{-1} z\right)^{-1} \cdot \cos \omega_{0}+\left(a^{-1} z\right)^{-2}} \\
& =\frac{a \cdot z \cdot \sin \omega_{0}}{1-2 a \cdot z^{-1} \cdot \cos \omega_{0}+a^{2} \cdot z^{-2}} \\
& \sin \omega_{0} n=\frac{e^{j} \omega_{0 n}-e^{-j} \omega_{0} n}{2 j}
\end{aligned}
$$

$$
\begin{aligned}
& z\left[\sin \omega_{0} n \cdot v(n)\right]=\sum_{n=-\infty}^{\infty} \sin \omega_{0} n \sim_{1} v(n) \cdot z^{-n} \\
& =\sum_{n=0}^{\infty}\left(\frac{e^{j \omega_{0} n}-e^{-j \omega_{0} n}}{2 i}\right) \cdot Z^{n-\infty} \\
& =\frac{1}{2 j}\left[\sum_{n=0}^{\infty} e^{j \omega_{0} n} \cdot z^{-n}-\sum_{n=0}^{\infty} e^{-j \omega_{0} n} \cdot z \mid-n\right] \\
& \left.=\frac{1}{2 j}\left[\sum_{n=0}^{\infty} \frac{\left(e^{\omega_{0}} \cdot z^{-1} j^{n}\right.}{a}-\sum_{n=0}^{\infty} e^{(-j \omega n} \cdot z^{-1}\right)^{n}\right] \\
& =\frac{1}{2 j}\left[\frac{1}{1-e^{j \omega_{0}^{\prime-1}}}-\frac{1}{1-e^{-j \omega \omega_{0}} \cdot z^{-1}}\right] \\
& =\frac{1}{2 j}\left[\frac{1-e^{j \omega_{0}-1} \cdot z^{j}-\left(1-e^{j \omega_{D} z^{-1}}\right)}{\left(1-j \omega \cdot z^{-1}\right)\left(1-e^{-j \omega} z^{-1}\right)}\right] \\
& =\frac{1}{\alpha j}\left[\frac{1-e^{-j \omega} \cdot z^{-1}-1+e^{j \omega} \cdot z^{-1}}{1-e^{-j \omega} \cdot z^{-1}-e^{j \omega} \cdot z^{-1}+e^{j \omega} \cdot z^{-1} \cdot e^{-j \omega} \cdot z^{-1}}\right] \\
& =\frac{1}{2 j}\left[\frac{z^{-1} e^{j \omega}-z^{-1} e^{-j \omega}}{1-z^{-1}\left(e^{j \omega}+e^{-j \omega}\right)+z^{-2}}\right] \\
& Z^{-1}\left(\frac{e^{j \omega}-e^{-j \omega}}{2 j}\right) \\
& 1-z^{-1} \cdot 2 \cdot\left(\frac{e^{j \omega}+e^{-j \omega}}{2}\right)+Z^{-2}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{z^{-1} \cdot \sin \omega_{0}}{1-z^{-1} \cdot 2 \cdot \cos \omega_{0}+z^{-2}} \\
& =\frac{z^{-1} \sin \omega_{0}}{1-2 z^{-1} \cdot \cos \omega_{0}+z^{-2}}
\end{aligned}
$$

Differentiation in Z-Domain:-
If $Z[x(n)]=X(z)$ The.

$$
\text { If } z[n \cdot x(n)]=\frac{-z \cdot d x(z)}{d z}
$$

Que: using Differentiation property Deter $\begin{gathered}\text { de the } z \text {-Transform of }\end{gathered}$ the signals $x(n)=n \cdot v(n)$
$\operatorname{san}^{n}{ }^{n}\left[a^{n} \cdot v(n)\right]=\frac{1}{1, a z^{-1}}$

$$
\left.\begin{array}{l}
\quad\left[\left[(1)^{n} \cdot v(n)\right]=\frac{1}{1-1: z^{-1}}\right. \\
\therefore Z[v(n)]=\frac{1}{1-z^{-1}}=\frac{1}{1-\frac{1}{z}} \\
Z[n \cdot u(n)]=-z \cdot \frac{1}{d z}\left(\frac{z}{z-1}\right. \\
Z-1
\end{array}\right)
$$

$$
\begin{aligned}
& \frac{d}{d x}\left(\frac{u}{v}\right)=\frac{u^{\prime} \cdot v-u \cdot v^{\prime}}{v^{2}} \\
& v^{\prime}=\frac{d u}{d x}, \quad v^{\prime}=\frac{d v}{d x} \\
& =-z\left\{\begin{array}{l}
\left.\frac{d z}{d z} \cdot(z-1)-z \cdot \frac{d(z-1)}{d z}\right] \\
(z-1)^{2}
\end{array}\right] \\
& -2\left[\frac{(z-1)=z+1}{(z-1)^{2}}\right] \\
& =-z \cdot\left[\frac{z-1-z}{(z-1)^{2}}\right] \\
& =\frac{z}{(z-1)^{2}}
\end{aligned}
$$

Que:- Determine the signal $x(n)$ where z-Transform is givenby

$$
x(z)=\log \left(1+a z^{-1}\right),|z|>|a|
$$

$\mathrm{SOl}^{\text {An }}$

$$
\begin{aligned}
\frac{d x(z)}{d x z} & =\frac{d \cdot \log \left(1+a z^{-1}\right)}{d\left(1+a z^{-1}\right)} \cdot \frac{d\left(1+a z^{-1}\right)}{d z} \\
& =\frac{1}{\left(1+a z^{-1}\right)} \cdot a \cdot \frac{d z^{-1}}{d z} \\
& =a \cdot \frac{1}{\left(1+a z^{-1}\right)} \cdot(-1) \cdot z^{-1-1}
\end{aligned}
$$

$$
\begin{aligned}
& =-a \cdot \frac{1}{\left(1+a z^{-1}\right)} \cdot z^{-2} \\
-z \cdot d x(z) & =\frac{-z^{\prime} \cdot(-a) \cdot z^{-2}}{\left(1+a z^{-1}\right)} \\
& =\frac{z^{-1} \cdot a}{1+a z^{-1}} \\
& =a \cdot z^{-1} \cdot \frac{1}{1-(-a) z^{-1}}
\end{aligned}
$$

Take perverse
z-Traansform on both sides in

$$
\begin{aligned}
& n \cdot x(n)=a \cdot(-a)^{n-1} \cdot U(n-1) \\
& \Rightarrow x(n)=\frac{1}{n} \cdot a^{\prime} \cdot(-1)^{n-1} \cdot(a)^{n-1} \\
& u(n-1)
\end{aligned}
$$

$$
=\frac{1}{n}: a^{n} \cdot(-1)^{n-1} \cdot u \cdot(n-1)
$$

Convolution property :-i If Two signals $x_{1}(n)$ and $x_{2}(a)$ and we Gill make convolution

$$
\begin{aligned}
& x(n)=x_{1}(n) * x_{2}(n) \stackrel{z}{\longrightarrow} \chi(z)= \\
& \begin{array}{l}
x(z)= \\
x_{1}(z): x_{2}(z) \\
(z)
\end{array} \\
& z\left[x_{1}(n) * x_{2}(n)\right]=x_{0}(z) \cdot x_{2}(z) \\
& \text { ot Twosignals }
\end{aligned}
$$

That cis convolution in lime. Domain ¿'s product of two signals in Z-Domain?

The Region of convergence $(R O C)$ of $x(z)$ is the inters. action of $x_{1}(z)$ and $x_{2}(z)$.
Que:- Find the convolution of signal $x_{1}(n)=a^{n, v(n),} x_{2}(n)=v(n)$ using z-Tr ansforn.

Son:-

$$
\begin{aligned}
& \text { ing } \\
& x_{1}(z)=z\left[x_{1}(n)\right]=z\left[a^{n \cdot v(n)]}\right. \\
&=\frac{1}{1-a \cdot z^{-1}},
\end{aligned}
$$

$$
=\frac{1}{1-a \cdot z^{-1}}
$$

Roc: $|z| z|a|$

$$
\begin{aligned}
& x_{2}(z)=z[u(n)]=\frac{1}{1-z^{-1}}, R \circ c \cdot|z|>11 \\
& x(n)=x_{1}(n) * x_{2}(n) \\
& z[x(n)]=x(z)=z\left[x_{1}(n) * x_{2}(n)\right] \\
& =x_{i}(z) \cdot x_{2}(z) \\
& X(z)=\frac{1}{1-a z^{-1}} \cdot \frac{1}{1-Z^{-1}} \text {, Bymaking } \\
& =\frac{A}{1-a z^{-1}}+\frac{B}{1-z^{-1}} \quad \text { traction } \\
& A=\operatorname{lin}^{-1}\left(1-a z^{-1}\right), X(Z) \\
& z^{-1} \rightarrow \frac{1}{a} \text {. } \\
& =\lim _{z^{-1} \rightarrow \frac{1}{a}}\left(1-a z^{-1}\right) \cdot \frac{1}{\left(1-a z^{-1}\right)\left(1-z^{-1}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{1-\frac{1}{a}} \Rightarrow \frac{1}{\frac{a-1}{a}}=\frac{a}{a-1} \\
& B=\lim _{z^{-1} \rightarrow 1}\left(1-z^{-1}\right), \times(z) \\
& =\lim _{z^{-1} \rightarrow 1}\left(1-x^{-1}\right) \cdot \frac{1}{\left(1-a z^{-1}\right)\left(1-z^{-1}\right)} \\
& =\frac{1}{1-a \times i}:=\frac{1}{1-a} \\
& X(Z)=\frac{a / a-1}{1-a z^{-1}}+\frac{1 / 1-a}{1-a Z^{-1}} \\
& =\frac{-\frac{a}{1-a}}{1-a z^{-1}}+\frac{1 / 1-a}{1-z^{-1}} \\
& \therefore=\frac{1}{1-a}\left[\frac{1}{i-z^{-1}}-\frac{a}{1-a z^{-1}}\right] \\
& \text { Making Inverese z-Transforem } \\
& \begin{aligned}
Z^{-1}[(z)] & =\frac{C}{x}+ \\
& =x(n)
\end{aligned} \\
& =\frac{1}{1-a} \cdot\left[v(n)-a \cdot a^{n} \cdot v(n)\right] \\
& \Rightarrow x(n)=\frac{1}{1-a}\left[u(n)-a^{n+1} \cdot u(n)\right]
\end{aligned}
$$

$R_{0} C: R_{1} \cap R_{2}$

$$
|z|>|a| \quad|z|>!
$$

If. $a \cdot y$ 1, Then $\operatorname{ROC} R \operatorname{Rin}(z) \cdot|z|>/ 9 \mid$

If a<1, then ROCR:|z|>|a|

The convolution property is most powerful property of the z-Transform

$$
\text { (i) } \quad \operatorname{m}
$$

Initial value Theorems:-
If $x(n)=0$ for $n<0$, Then

$$
\dot{x}(0)=\lim _{z \rightarrow \infty} x(z)
$$

proof:-

$$
\begin{aligned}
& x(z)=\sum_{n=0}^{\infty} x(n) \cdot z^{-n} \\
& \Rightarrow \\
& \Rightarrow x(z)=x(0) \cdot z^{-0}+x(1) \cdot z^{-1}+x(2) \cdot z^{-2}+\cdots \\
&=x(0) \cdot 1+x(1) \cdot \frac{1}{z}+x(2) \cdot \frac{1}{z^{2}}+\cdots \\
& \lim _{z \rightarrow \infty} x(z)=x(0)+\frac{x(1)}{\infty}+x(2) \frac{1}{\infty}+\cdots \\
&=x(0)+0+0+0 \\
&=x(0)
\end{aligned}
$$

Coreree lat ion of Two sequences: If Two signals $x_{1}(n)$ and $x_{2}(n)$. Then Their correlation is

$$
\begin{array}{cc}
r_{x_{1} x_{2}}(n)=x_{1}(n) * x_{2}\left(-n_{1}\right) \\
\downarrow z & \downarrow z \text {-Transform } \\
R_{x_{1} x_{2}}(z)= & x_{1}(z) \cdot x_{2}\left(z^{-1}\right) \\
& \text { is. the inter- }
\end{array}
$$

The ROC of $R x_{1} x_{2}$ is the intersection of Roc ot $X_{1}(z)$ and

$$
x_{2}\left(z^{-1}\right)
$$

Que:- Find the Z-Triansfurm and ROC of the signal sequence.

$$
\begin{aligned}
& x(n)=\left[4\left(2^{n}\right)-5\left(3^{n}\right)\right] u(n) \\
& \text { Sol:- } x(n)=4(2)^{n} \cdot v(n)-5(3)^{n} \cdot v(n) \\
& =4 \cdot x_{1}(n)-5 x_{2}(n) \\
& x_{1}(n)=(2)^{n} \cdot u(n) \\
& x_{1}(z)=z\left[(z)^{n} u(n)\right]=\frac{1}{1-2 z^{-1}} \\
& R \circ \subset R_{l}:|Z|>|2| \\
& x_{2}(z)=z\left[(3)^{n} \cdot v(n)\right]=\frac{1}{1-3 z^{-1}} \\
& R O C R_{2}:|z|>|3| \\
& R O C R: R_{1} \cap R_{2} \\
& \text { / l } \downarrow \\
& |z|>|\alpha,|z|>13| \\
& \Rightarrow R O C R:|z|>|3| \text { for } x^{\prime}(z) \\
& X(z)=Z[x(n)] \\
& =4 \cdot \frac{1}{1-2 \cdot Z^{-1}}-5 \cdot \frac{1}{1-3 Z^{-1}}
\end{aligned}
$$

Que'- Find the z - tra inform of sequence $x(n)=u(n)$
son: we know $z[x(n)]=x(z)$
and $z[x(-n)]=x\left(z^{-1}\right)$
Similarly we know the z-Trans form of $u(n)$ is

$$
\begin{aligned}
z[u(A)] & =\frac{1}{1-z^{-1}} \\
\text { and } Z[\cup(-n)] & =\frac{1}{1-\left(z^{-1}\right)^{-1}} \\
& =\frac{1}{1+z}, R \circ c \cdot|z|>1
\end{aligned}
$$

Que:- Find the Z-Transforen of the signal $x_{1}(n)=\left\{\begin{array}{l}1,2,3,4,0,2\} \\ 1\end{array}\right.$ By using Time shitting property
of Z-Transform find the z-Transform of following signal:

$$
x_{2}(n)=\{1,2,3,4,0,1\}
$$

son:

$$
\begin{aligned}
& x_{2}(z)=z\left[x_{1}(n+2)\right]=z^{2} \cdot x_{1}(z) \\
& x_{1}(z)=\sum_{n=0}^{5} x(n) \cdot z^{-1} \\
& = \\
& \quad x^{-}(0) \cdot z^{-0}+x(1) \cdot z^{-1}+x(2) \cdot z^{-2}+x(3) \cdot z^{-3} \\
& \\
& +x(4) \cdot z^{-4}+x(5) \cdot z^{-5} \\
& =1 \cdot z^{-0}+2 \cdot z^{-1}+3 \cdot z^{-2}+4 \cdot z^{-3}+0 \cdot z^{-4} \\
& \quad+1 \cdot z^{-5} \\
& =1+2 z^{-1}+3 z^{-2}+4 z^{-3}+z^{-5}
\end{aligned}
$$

FromEg?-(1) ROC: $R_{1} \rightarrow$ EntiCe z-place

$$
\begin{aligned}
x_{2}(z) & =z^{2} \cdot x_{1}(z) \text { except } z=0 \\
& =z^{2} \cdot\left[1+2 z^{-1}+3 z^{-2}+4 \cdot z^{-3}+z^{-5}\right]
\end{aligned}
$$

$$
=z^{2}+2 \cdot z^{1}+3 \cdot z^{0}+4 \cdot z^{-1}+z^{-3}
$$

ROC: $R_{2} \rightarrow$ Entire z-plane except $Z=0$ and $Z=\infty$.

Qu:- Find the conuplition of following two sequences, by using $z=\{$ brant for or properly.

$$
x_{1}(n)=\{1,-2,1\}, x_{2}(n)=\{1,1,1\} .
$$

$$
\begin{aligned}
& \text { A) } x_{1}(z)=z\left[x_{1}(n)\right]=\sum_{n=0}^{2} x_{1}(n) \cdot z^{-n} \\
&=x_{1}(0) \cdot z^{-0}+x_{1}(1) \cdot z^{-1}+x_{1}(z) \cdot z^{-2} \\
&=1 \cdot z^{-0}+(-2) \cdot z^{-1}+1 \cdot z^{-2} \\
&=1-2 \cdot z^{-1}+z^{-2} \\
& x_{2}(z)=z\left[x_{2}(n)\right]=\sum_{n=0}^{2} x_{2}(n) z^{-n} \\
&=x_{2}(0) \cdot z^{-0}+x_{2}(1) \cdot z^{-1}+x_{2}(2) \cdot z^{-2} \\
&=1 \cdot z^{-0}+1 \cdot z^{-1}+1 \cdot z^{-2}=z^{-0}+1+z^{-1}+z^{-2}
\end{aligned}
$$

Sake $x(n)=x_{1}(n) * x_{2}(n)$
By making z-transform on both sides.

$$
\begin{align*}
& \Rightarrow x[x(x)]=z\left[x_{1}(n) * x_{2}(n)\right]=x_{1}(z), x_{2}(z) \\
& \Rightarrow x(z)=\left(1-2 z^{-1}+z^{-2}\right) \cdot\left(1+z^{-1}+z^{-2}\right) \\
& \Rightarrow x(z)=1+z^{-1}+z^{-2}-2 z^{-1}-2 z^{-2}-2 z^{-3}+z^{-2}+z^{-3}+z^{-4} \\
& \Rightarrow x(z)=1-z^{-1}+0 \cdot z^{-2}-z^{-3}+z^{-4} \rightarrow \text { (1) } \tag{1}
\end{align*}
$$

By taking 'inverse z transform to above equation.

$$
\Rightarrow x(n)=\{1,-1,0,-1,1\} \text {. }
$$

ave Find the z-transform of the sequence

$$
x(n)=\left(\frac{1}{3}\right)^{n-1} \cdot \mu(n-1)
$$

A) We know $z[x(n-k)]=z^{-k} \cdot x(z)$

$$
\begin{aligned}
& \& z(x(n+k)]=z^{k}, x(z) \\
& z\left[\left(\frac{1}{3}\right)^{n} \cdot \mu(n)\right]=\frac{1}{1-\frac{1}{3} \cdot z^{-1}} \\
\therefore & z[x(n)]=x(z)=z\left[\left(\frac{1}{3}\right)^{n-1} \cdot \mu(n-1)\right] \\
& =z^{-1} \cdot \frac{1}{1-\frac{1}{3} \cdot z^{-1}}
\end{aligned}
$$

Que:- Find the Z-transform of the sequence.

$$
x(n)=n \cdot a^{n} \cdot \mu(n)
$$

A) the know if $x(n) \leftrightarrow x(z)$

Here,

$$
\text { Then } x \cdot x(n) \stackrel{z}{\leftrightarrow}-z \cdot \frac{d x(z)}{d z}
$$

$$
\begin{aligned}
& x(n)=n \cdot s(n) \text {, where } s(n)=a^{n} \cdot v(n) \\
& s(z)=z[s(n)]=z\left[a^{n} \cdot v(n)\right] \\
& =\frac{1}{1-a \cdot z^{-1}}=\frac{1}{1-a \frac{1}{z}}=\frac{1}{\frac{z-a}{z}}=\frac{z}{z-a}
\end{aligned}
$$

Now making z transform of $x(n c)$

$$
\begin{align*}
& z[x(n)]=x(z) \\
& =-z \cdot \frac{d s(z)}{d z} \rightarrow(n, s(n)] \tag{1}\\
\Rightarrow & x(z)=-z \cdot \frac{d}{d z}\left(\frac{z}{z-a}\right) \\
\Rightarrow & x(z)=-z\left[\frac{d z}{d z(z-a)-z \cdot \frac{d(z-a)}{d z}}\right] \\
\Rightarrow & x(z)=-z\left[\begin{array}{l}
\frac{d}{d x}\left(\frac{v}{v}\right) \\
v^{\prime}=\frac{d u}{d x} ; v^{2}: \frac{d v}{d x} \\
\end{array}\right]
\end{align*}
$$

$$
=-z\left[\frac{z-a-z}{(z-a)^{2}}\right] \Rightarrow \times(z)=\frac{a \cdot z}{(z-a)^{2}}
$$

Que:- Find the system function \& impulse response of the system described by the difference eqn.

$$
y(n)=\frac{1}{5} y(n-1)+x(n)
$$

a) Given, system is $y(n)=\frac{1}{5} y(n-1)+x(n)$

Sake z transform on better sides.

$$
\begin{aligned}
& \Rightarrow z[y(n)]=\frac{1}{5} z[y(n-1)]+z[x(n)] \\
& \Rightarrow y(z)=\frac{1}{5} z^{-1} y(z)+x(z) \\
& \Rightarrow y(z)=\frac{1}{5} z^{-1} y(z)=x(z) \\
& \Rightarrow y(z) \cdot\left[1-\frac{1}{5} z^{-1}\right]=x(z) \\
& \Rightarrow \frac{y(z)}{x(z)}=\frac{1}{1-\frac{1}{5} z^{-1}} \\
& \Rightarrow H(z)=\text { sustain function }=\frac{1}{1-\frac{1}{3} \cdot z^{-1}}
\end{aligned}
$$

we will find inverse z-transform is
Impulse response $=n(n)=\left(\frac{1}{5}\right)^{n}, u(n)$
Ques:- $y(n)=x(n)+2 x(n-1)-4 x(n-2)+x(n-3)$
A) Here $x(n)$ is isp $f y(n)$ is $\%$

The given system is

$$
y(n)=x(n)+2 x(n-1)-4 x(n-2)+x(n-3)
$$

Take z-transform on both sides we will get,

$$
\begin{aligned}
& \Rightarrow y(z)=x(z)+2 z^{-1} x(z)-4 \cdot z^{-2} x(z)+z^{-3} \times x(z) \\
& \Rightarrow y(z)=x(z)\left[1+2 \cdot z^{-1}-4 \cdot z^{-2}+z^{-3}\right] \\
& \Rightarrow \frac{y(z)}{x(z)}=(z o)\left(1+2 \cdot z^{-1}-4 \cdot z^{-2}+z^{-3}\right]=H(z)=\text { System } \\
& \text { function }
\end{aligned}
$$

by making inverse z trionsform on both sides rue rill get
$\Rightarrow h(n)=\left\{\begin{array}{l}1,2,-4,1\}= \\ \uparrow\end{array} \begin{array}{c}\text { impulse response of } \\ \text { the system. }\end{array}\right.$ the system.
me Find the pole-Zero plot for the system described by the difference eq n

$$
y(n)=\frac{3}{9} y(n-1)+\frac{1}{8} y(n-2)=x(n)-x(n-1)
$$

t) Given, difference egn is

$$
y(n)-\frac{3}{4} y(n-1)+\frac{1}{8} y(n-2)=x(n)-x(n-1)
$$

Jaking z-transform on bots sides, we get

$$
\begin{aligned}
& y(z) \div \frac{3}{4} z^{-1} y(z)+\frac{1}{8} z^{-2} y(z)=x(z)-z^{-1} x(z) \\
& \Rightarrow y(z) \cdot\left[1-\frac{3}{4} z^{-1}+\frac{1}{8} z^{-2}\right]=x(z) \cdot\left[1-z^{-1}\right] \\
& \Rightarrow \frac{Y(z)}{x(z)}=H(z)=\frac{1-z^{-1}}{1-\frac{3}{4} z^{-1}+\frac{1}{8} z^{-2}} \\
& \begin{array}{l}
\Rightarrow H(z)=\frac{1-z^{-1}}{1-\frac{1}{4} z^{-1}-\frac{1}{2} z^{-1}+\frac{1}{8} z^{-2}}=\frac{1-z^{-1}}{\left(1-\frac{1}{2} z^{-1}\right)+\frac{1}{8} z^{-2}-\frac{1}{4} z^{-1}} \\
\Rightarrow H(z)=1-z^{-1}
\end{array} \\
& \Rightarrow H(z)=\frac{1-z^{-1}}{\left(1-\frac{1}{z^{2}} z^{-1}\right)+\frac{1}{4} \cdot z^{-1}\left(\frac{1}{2} z^{-1}-1\right)}=\frac{1-z^{-1}}{\left(1-\frac{1}{2} z^{-1}\right)-\frac{1}{4} z^{-1}\left(1-\frac{1}{2} z^{2}\right)} \\
& \Rightarrow H(z)=\frac{1-z^{-1}}{\left(1-\frac{1}{2} z^{-1}\right)\left(1-\frac{1}{4} z^{-1}\right)} \\
& R_{0} c_{i}|z|>\frac{1}{2} \\
& \text { outerside of coitermost file }
\end{aligned}
$$

of System function
Here, ROC includes the unit circle; Hence
the system is stable.
\rightarrow Here ROC of system function cannot contain any pole.
登
:\%: Find the z-transform $\&$ Roc of green signal

$$
\begin{aligned}
& x(n)=\frac{1}{2} \cdot \sigma(n)+8(n-1)-\frac{1}{3} ढ(n-2) \\
> & x(z)=z[x(n)] \\
= & \frac{1}{2} z[z(n)]+z[z(n-1)]-\frac{1}{3}[z(n-2)] \\
= & \frac{1}{2} \cdot 1+z^{-1} \cdot z[z(n)]-\frac{1}{3} \cdot z^{-2} \cdot z[6(n)] \\
= & \frac{1}{2}+z^{-1}-\frac{1}{3} \cdot z^{-2}
\end{aligned}
$$

$R O C$. Entire z-plane except $z=0$
Vote :-Z[Z(n)]=1 \therefore unit impulse signal.

$$
\begin{aligned}
& \text { he :- } x(n)=u(n-2) \\
& =z^{-2} \cdot z[u(n)]=z[x(n)]=z[u(n-2)] \\
& =z^{-2} \cdot \frac{1}{\frac{z-1}{z}}=z^{-2} \cdot \frac{z^{-1}}{z-z^{-1}}=\frac{z^{-1}}{z-1}=\frac{1}{1-\frac{1}{z}} \\
& z(z-1)
\end{aligned}
$$

tore ROC: $|z|>1$

$$
\begin{aligned}
& \text { we }=x(n)=(n+0.5) \frac{1^{n}}{3} \cdot v(n) \\
& 1>x(z)=Z[x(n)]=X\left[(n+0.5) \frac{1}{3} \cdot v(n)\right. \\
& =Z\left[n \cdot\left(\frac{1}{3}\right)^{n} \cdot v(n)+0.5\left(\frac{1}{3}\right)^{n} v(n)\right]
\end{aligned}
$$

$$
\begin{align*}
& =z\left[n \cdot\left(\frac{1}{3}\right)^{n} v(n)\right]+0.5 z\left[\left(\frac{1}{3}\right)^{n} \cdot v(n)\right] \\
& =z\left[n \cdot \lambda_{1}(n)\right]+0.5 \times \frac{1}{1-\frac{1}{3} z^{-1}} \\
& \text { NOTE :- } z\left[a^{n} \cdot u(n)\right]=\frac{1}{1-a \cdot z^{-1}}=\frac{z}{z-a} \\
& =-z \frac{d x_{1}(z)}{d z}+0,5 \frac{\dot{z}}{z-\frac{1}{3}} \tag{1}\\
& \Rightarrow \frac{d x_{1}(z)}{d z}=\frac{d}{d z} \cdot\left(\frac{z}{z-\frac{1}{3}}\right) \\
& \begin{array}{l}
\Rightarrow \frac{d x_{1}(z)}{d z}=\frac{\frac{d z}{d z} \cdot\left(z-\frac{1}{3}\right)-z \cdot \frac{d\left(z-\frac{1}{3}\right)}{d x}}{\left(z-\frac{1}{3}\right)^{2}} \\
=\left(z-\frac{1}{3}\right)-z \cdot 1
\end{array} \\
& =\frac{\left(z-\frac{1}{3}\right)-z \cdot 1}{\left(z-\frac{1}{3}\right)^{2}}=\frac{-1 / 3}{\left(z-\frac{1}{3}\right)^{2}} \\
& \begin{aligned}
\therefore x(z) & =(-z) \frac{\left(-\frac{1}{3}\right)}{\left(z-\frac{1}{3}\right)^{2}}+\frac{0.5 z}{z-\frac{1}{3}} \\
& =z
\end{aligned} \\
& =\frac{z}{3\left(z-\frac{1}{3}\right)^{2}}+\frac{z}{2\left(z-\frac{1}{3}\right)}
\end{align*}
$$

Que if $y(z)=\frac{0.5\left(1-0.5 z^{-1}\right)}{\left(1-0.25 z^{-1}\right)\left(1-0.75 z^{-1}\left(1-z^{-1}\right)\right.}$
Find the steady state value of $y(n)$ if it exists.
(b) Find $x(\infty)$ if $x(z)$ is given by $x(z)=\frac{3 z}{(z-1)(z+1)}$
A) Final value Inicirem:-

According to final value Theorem, $(z-1) \times(z)$ or $\left(1-z^{-1}\right) \times(z)$ has all the Poles should lie inside the unit circle, then only
final value of $x(n)$ will exist. That means no pole should lie on the unit circle (acer) outside the init circle.
a)-Steady state value of $y(n)$ is

$$
\begin{aligned}
& Y(\infty)=\lim _{z^{-1} \rightarrow 1}\left(1-z^{-1}\right) Y(z) \\
& \lim _{z^{-1} \rightarrow 1}\left(1-z^{-1}\right) \cdot \frac{0.5\left(1-0.5 z^{-1}\right)}{\left(1-0.25 z^{-1}\right)\left(1-0.75 z^{-1}\right)\left(1-z^{-1}\right)}
\end{aligned}
$$

Here twa poles $0.25 \& 0.75$ lie inside the unit circle.

$$
\begin{aligned}
& =\lim _{z^{-1} \rightarrow 1} \frac{0.5\left(1-0.5 z^{-1}\right)}{\left(1-0.25 z^{-1}\right)\left(1-0.75 z^{-1}\right)} \\
& =\frac{0.5 \times(1-0.5 \times 1)}{(1-0.25 \times 1)(1-0.75 \times 1)}=\frac{0.5 \times 0.5}{0.75 \times 0.25} \\
& =\frac{0.25}{0.75 \times 0.25}=\frac{1}{0.75}=1.33 .
\end{aligned}
$$

(d) Steady state value of $x(n)$ is.

$$
\begin{aligned}
& x(\infty)=\lim _{z \rightarrow 1}(z-1) \cdot x(z) \\
& =\lim _{z \rightarrow 1}(z-1) \frac{3 z}{(z-1)(z+1)}=\lim _{z \rightarrow 1} \frac{3 z}{z+1}
\end{aligned}
$$

Here $(z-1) \times(z)=\frac{3 z}{z+1}$ has one pole at $z=-1$ on the unit circe. So final value of $x(\infty)$ dues not exist.

* The Inverse z-dronsform:-
\rightarrow It is expressed as $x(n)=z^{\prime}[x(z)]$.
By using 3 methods we con perform the immerse z-transform.
(1) Long Division Method
(2) Partial Fraction Expansion method
(3) Residue method
(1) Long Division Method:-

Que Determine the inverse z-transform of

$$
\begin{aligned}
& x(z)=\frac{1}{1-\frac{3}{2} z^{-1}+\frac{1}{2} z^{-2}} \text { when. } \\
& \text { ROC }: 1>1 \text {. }
\end{aligned}
$$

(i) ROC: $|z| y 1$
A) (a)
(ii) $R O C:|z|<\frac{1}{2}$
is Here Roc is $|z| \geq 1$; that mons outwards of the (4) unit circle.
$\sum_{a}, x(n)$ is causal signal

$$
\begin{aligned}
\therefore x(z) & =\frac{1}{1-\frac{3}{2} z^{-1}+\frac{1}{2} z^{-2}} \\
= & t+\frac{3}{2} z^{-1}+\frac{7}{4} z^{-2}+\ldots
\end{aligned}
$$

By taking inverse z-transform, we sill get

$$
x(n)=\sum_{n=0}^{\left\{1, \frac{3}{2}, \frac{7}{4} \cdots\right\}}
$$

$$
\begin{aligned}
& 1-\frac{3}{2} z^{-1}+\frac{1}{2} z^{-2}\left[\begin{array}{l}
1+3 / 2 z^{-1}+7 / 4 z^{-2}+\cdots \\
t-\frac{1-\frac{3}{2} z^{-1}+\frac{1}{2} z^{-2}}{\frac{3}{2} z^{-1}-\frac{1}{2} z^{-2}}
\end{array}\right. \\
& \frac{\frac{3}{2} z^{-1}-\frac{9}{4} z^{-2}+3 / 4 z^{-3}}{7 / 4 z^{-2}-3 / 4 z^{-3}} \\
& \frac{7 / 4 \cdot z^{-2}-21 / 8 z^{-3}+7 / 8 z^{-4}}{\frac{15}{8} z^{-3}-\frac{7}{8} z^{-4}}
\end{aligned}
$$

In this case ROC is $|z|<0.5$; that means the interiver of the circle. Here $x(n)$ signal is anti-causal signal. Here we will get a Power series expansion is trove powers of z. We perform the long division method in following pay:-

$$
\begin{aligned}
& \frac{7 z^{2}-21 z^{3}+14 z^{4}}{15 z^{3}-14 z^{4}} \\
& \therefore x(z)=\frac{1}{\frac{1}{2} z^{-2}-\frac{3}{2} z^{-1}+1} \\
& =0+0 . z^{-1}+2 z^{2}+6 z^{3}+14 z^{4}+\cdots
\end{aligned}
$$

Take inverse Z-transform is

$$
x(n)=\{\ldots(4,6,2,0,0\}
$$

Anti-causal signal (or) left side signal
2812
Que : The impulse response for a discrete time system is given as $h(n)=\{1,2,3\}$ \& $0 / p$ response is given $Y(n)=.[1,1,2,-1,3\}$. Determine discrete time ip signal.
A) method

$$
y(n)=h(n) * x(n)
$$

Let $x(n)=\{a, b, c\}$.

$$
\begin{aligned}
Y(n) & =\{a, b+2 a, 3 a+2 b+c, 2 c+3 b, 3 c\} \\
& =\{1,1,2,-1,3\}
\end{aligned}
$$

By comparing, $a=1 ; b+2 a$

$$
\begin{aligned}
& \Rightarrow b+2 \cdot 1=1 \Rightarrow b=-1 ; c=1 \\
& \therefore x(n)=\{a, b, c\}=\{1,-1,1\}
\end{aligned}
$$

Aos/f: $y(n)=x(n) * h(n)$
make z transform un both soles.

$$
\begin{aligned}
& \Rightarrow y(z)=x(z), H(z), \\
& \Rightarrow x(z)=\frac{y(z)}{H(z)} \quad \therefore H(z)=\sum_{n=0}^{2} n(n) \cdot z^{-n} . \\
& \therefore y(z)=\sum_{n=0}^{4} y(n) \cdot z^{-n}=1+z^{-1}+2 \cdot z^{-2}-z^{-3}+3 \cdot z^{-4} .
\end{aligned}
$$

$$
\begin{aligned}
& 1+2 \cdot z^{-1}+3 z^{-2} \begin{array}{l}
\frac{1-z^{-1}+z^{-2}}{1+z^{-1}+2 \cdot z^{-2}-z^{-3}+3 \cdot z^{-4}} \\
\frac{\left(-1+2 z^{-1}+3 z^{-2}\right.}{(-)^{-2}} \\
-z^{-1}-z^{-2}-z^{-3}+3 z^{-4} \\
-z^{-1}+2 z^{-2}-3 z^{-3}
\end{array} \frac{z^{-2}+2 z^{-3}+3 z^{-4}}{z^{-2}+2 z^{-3}+3 z^{-4}} \\
& \frac{(-)(t)}{0}
\end{aligned}
$$

By making inverse z-transform

$$
x(n)=\{1,-1,1\} .
$$

(2) Inverse z-transform by using Partial. Fraction Method :-
\rightarrow A $\mathrm{H}(\mathrm{A})$ con Here factorization is done in denominator.
-y If $H(z)$ con be written as $H(z)=\frac{A t}{Z-p}+\frac{A_{2}}{(Z-p)^{2}}+\frac{A_{m-1}}{(Z-p)^{m-1}}$ $+\frac{A_{m}}{(Z-p)^{m}}$
Then $A_{m}=\lim _{z \rightarrow p}(z-p)^{m}, H(z)$

$$
\begin{aligned}
A_{m-1} & =\frac{1}{1!} \lim _{z \rightarrow p} \frac{d^{1}}{d z!}\left[(z-p)^{m} \cdot H(z)\right] \\
A_{m-2} & =\frac{1}{2!} \lim _{z \rightarrow p} \frac{d^{2}}{d z^{2}}\left[(z-p)^{m} \cdot H(z)\right] \\
A_{m-3}= & \frac{1}{3!} \lim _{z \rightarrow p} \frac{d^{3}}{d z^{3}}\left[(z-p)^{m} \cdot(H(z)]\right.
\end{aligned}
$$

$$
\begin{aligned}
& A_{3}=\frac{1}{(m-3)!} \lim _{z \rightarrow \rho} \frac{d^{m-3}}{d z^{m-3}}\left[(z-p)^{m} \cdot H(z)\right] \\
& A_{2}=\frac{1}{(m-2)!} \lim _{z \rightarrow p} \frac{d^{m-2}}{d z^{m-2}}\left[(z-p)^{m} \cdot H(z)\right] \\
& A_{1}=\frac{1}{(m-1)!} \lim _{z \rightarrow p} \frac{d^{m-1}}{d z^{m-1}}\left[(z-p)^{m} \cdot H(z)\right]
\end{aligned}
$$

Que:- By using partial fraction method. find Inverse Z.transform of the following transfer function..

$$
H(z)=\frac{-4+8 \cdot z^{-1}}{1+6 z^{-1}+8 z^{-2}}
$$

A) Given transfer function is $H(z)=\frac{-4+8 z^{-1}}{1+6 z^{-1}+8 z^{-2}}$

$$
\begin{aligned}
= & \frac{-4+8 z^{-1}}{1+4 z^{-1}+2 z^{-}+8 z^{-2}}=\frac{-4+8 z^{-1}}{\left(1+4 z^{-1}\right)\left(2 z^{-1}\left(1+4 z^{-1}\right)\right.} \\
= & \left(+2 z^{-1}\right)\left(1+4 z^{-1}\right) \\
\Rightarrow & \left(\because(z)=\frac{A}{1+2 z^{-1}}+\frac{1+8 z^{-1}}{1+4 z^{-1}}\right. \\
A= & \lim ^{-1} \rightarrow-1 / 2 \\
& =z^{-1} \rightarrow-1 / 2\left(1+2 z^{-1}\right) \cdot H(z) \\
& \left(1+2 \cdot z^{-1}\right), \frac{\left(-4+8 z^{-1}\right)}{\left(1+2 z^{-1}\right)\left(1+4 z^{-1}\right)} \\
= & -4+8 \times(-1 / 2) \\
& 1+4 \times(-1 / 2)
\end{aligned}
$$

$$
\begin{aligned}
& B^{=} \lim _{z^{-1} \rightarrow-1 / 4}\left(1+4 z^{-1}\right), H(z) \\
& =\lim _{z^{-1} \rightarrow-^{-1 / 4}} 1+4 z^{-1} \frac{\left(-4+8 z^{-1}\right)}{\left(1+2 z^{-1}\right)\left(1+4 z^{-1}\right)} \\
& =\frac{-4+8 \times(-1 / 4)}{1+2 \times(-1 / 4)}=\frac{-6}{1 / 2}=-12 \\
& \therefore H(z)=\frac{8}{1+2 z^{-1}}+\frac{-12}{1+4 z^{-1}}
\end{aligned}
$$

By making inverse z-transform,

$$
h(n)=8 \cdot(-2)^{n} \cdot \mu(n)-12 \cdot(-4)^{n} \cdot v(n)
$$

Qu\%. By using partial fraction method find immerse z-transform $x(z)=\frac{z^{3}}{(z+1)(z-1)^{2}}$

1) Given that, $\frac{x(z)}{z}=\frac{z^{2}}{(z+1)(z-1)^{2}}$

$$
\begin{aligned}
& \text { Jake } F(z)=\frac{x(z)}{z}=\frac{A}{z+1}+\frac{B}{z-1}+\frac{C}{(z-1)^{2}} z
\end{aligned}
$$

$$
=\lim _{z \rightarrow-1}(z+1) \frac{z^{2}}{(z+1) \cdot(z-1)^{2}}=\frac{(-1)^{2}}{(-1-1)^{2}}=\frac{1}{4}
$$

$$
\left\{\begin{array}{l}
z\left[a^{n} \cdot v(n)\right]=\frac{1}{1-a z^{-1}}=\frac{z}{z-a} \\
z\left[(-a)^{n} \cdot v(n)\right]= \\
\frac{1}{1-(-a) z^{-1}}=\frac{1}{1+a z^{-1}} \\
=\frac{z}{z+a}
\end{array}\right.
$$

$$
\begin{aligned}
& C=\lim _{z \rightarrow 1}(z-1)^{2} \cdot F(z) \\
& =\lim _{z \rightarrow 1}(z-1)^{2} \cdot \frac{z^{2}}{(z+1)(z-1)^{2}}=\frac{1^{2}}{1+1}=\frac{1}{2} \\
& B=\lim ^{B} \frac{d}{d z}\left[(z-1)^{2} \cdot F(z)\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{z \rightarrow 1} \frac{d}{d z}\left[(z-1)^{2} \cdot \frac{z^{2}}{(z+1)(z+1)^{2}}\right] \\
& \Rightarrow B=\lim _{z \rightarrow 1} \frac{d}{d z}\left[\frac{z^{2}}{z+1}\right] \quad\left[\because \frac{d}{d x}\left[\frac{v}{v}\right]=\frac{v^{\prime} v-u v^{\prime}}{v^{2}}\right] \\
& =\lim _{z \rightarrow 1} \frac{d z^{2}}{d z}(z+1)-z^{2} \cdot \frac{d(z+1)}{d z} \\
& =\lim _{z \rightarrow 1} \frac{2 \cdot z(z+1)-z^{2} \cdot 1}{(z+1)^{2}}=\lim _{z \rightarrow 1} \frac{2 z^{2}+2 z-z^{2}}{(z+1)^{2}} \\
& =\lim _{z \rightarrow 1} \frac{z^{2}+2 z}{(z+1)^{2}}=\frac{1^{2}+2 \times 1}{(1+1)^{2}}=3 / 4 \\
& \therefore F(z)=\frac{x(z)}{z}=\frac{A}{z+1}+\frac{B}{z-1}+\frac{c}{(z-1)^{2}} \\
& \Rightarrow x(z) \\
& \\
& \\
& \Rightarrow x(z)=\frac{1}{4} \cdot \frac{1}{z+1}+\frac{3}{4} \cdot \frac{1}{z-1}+\frac{1}{2} \cdot \frac{1}{(z-1)^{2}} \\
& \Rightarrow \frac{z}{z+1}+\frac{3}{4} \cdot \frac{z}{z-1}+\frac{1}{2} \cdot \frac{z}{(z-1)^{2}}
\end{aligned}
$$

Make inverse z-transform on both sides, we get,

$$
\begin{aligned}
& \Rightarrow x(n)=\frac{1}{4} \cdot(-1)^{n+} \text { tu }(n)+\frac{3}{4} \cdot(1)^{n} \cdot v(n)+\frac{1}{2} \cdot n(1)^{n} \cdot v(n) \\
& \Rightarrow x(n)=\frac{1}{4}(-1)^{n} \cdot v(n)+\frac{3}{4} \cdot u(n)+\frac{1}{2} n \cdot v(n)
\end{aligned}
$$

3.7.3 Residue Method

In this method, we obtain, inverse z-transform $x[n]$, by summing residues of $\left[\mathrm{X}(\mathrm{z}) \mathrm{z}^{\mathrm{n}-1}\right]$ at all poles. Mathematically, this may be expressed as

$$
\begin{equation*}
\mathrm{X}(\mathrm{n})=\sum_{\substack{\text { all poles } \\ X(z)}} \text { residues of }\left(X(z) \mathrm{z}^{\mathrm{n}-1}\right] \tag{3.46}
\end{equation*}
$$

Here, the residue for any pole of order m at $z=\beta$ is
Residue $=\frac{1}{(m-1)!} \lim _{z \rightarrow \beta}\left\{\frac{d^{m-1}}{d z^{m-1}}\left[(z-\beta)^{m} X(z) \cdot z^{n-1}\right]\right\}$

Example 3.35

Use residue method to find the inverse z-transform, $x(n)$ for

$$
X(z)=\frac{z}{(z-1)(z-2)}
$$

158 Digital Signal Processing

Solution: The given transform is

$$
X(z)=\frac{z}{(z-1)(z-2)}
$$

$X(z)$ has two poles of order $m=I$ at $z=1$ and at $z=2$.
We can obtain the corresponding residues as ahead :

$$
\text { For poles at } \mathbf{z}=1
$$

$\begin{aligned} \text { Residue } & =\frac{1}{0!} \operatorname{Lim}_{z \rightarrow 1}\left\{\frac{d^{0}}{d z^{0}}\left[(z-1)^{1} \cdot \frac{z . z^{n-1}}{(\mathrm{z}-1)(z-2)}\right]\right\}=\end{aligned}$

Similarly, for poles at $\mathbf{z}=2$

$$
\begin{aligned}
& \text { Residue }=\frac{1}{0!} \operatorname{Lim}_{z \rightarrow 2}\left\{\frac{d^{0}}{d z^{0}}\left[(z-2)^{1} \frac{z . z^{n-1}}{(z-1)(z-2)}\right]\right\} \\
& \quad(4-1) \\
& \\
& =\operatorname{Lim}_{z \rightarrow 2}\left[\frac{z}{z-1} z^{n-1}\right]=2.2^{n-1}=\left[\frac{z^{2} \cdot 2^{n} \cdot 2^{-1}}{2-1}\right] \frac{2^{n}}{2-1}=2^{n}, \\
& \text { Residue }=2^{n} \\
& \text { Hence, } x(n)=\left\{-1+2^{n}\right\} . u[n]
\end{aligned}
$$

Eximple 3.37

Obtain the inverse z-transform of

$$
X(n)=\ln \left(1+a z^{-1}\right),|z|>|a|
$$

Solution : According to logarithmic series expansion, we have

$$
\ln (1+x)=x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3} \ldots
$$

$$
\text { Therefore, } \quad X(z)=\ln \left(1+a z^{-1}\right)
$$

Simplifying, we have

$$
\begin{aligned}
X(z)= & a z^{-1}-\frac{1}{2}\left(a z^{-1}\right)^{2}+\frac{1}{3}\left(a z^{-1}\right)^{3} \cdots \\
& =a z^{-1}-\frac{1}{2} a^{2} z^{-2}+\frac{1}{3} a^{3} z^{-3} \cdots
\end{aligned}
$$

Taking inverse z-transform, we obtain

$$
x(n)=\left\{\begin{array}{l}
0, a,-\frac{1}{2} a^{2}, \frac{1}{3} a^{3}, \\
\uparrow
\end{array}\right\}
$$

Exanple 3.39

Find the inverse z-transform of

$$
X(z)=\frac{z^{3}+z^{2}}{(z-1)(z-3)} \quad \text { ROC }:|z|>3
$$

Solution

$$
\frac{x(z)}{z}=\frac{z^{2}+z}{(z-1)(z-3)} \text {; Here } 2 \text { poles are present having order }
$$

Converting the above improper rational function ($\because \mathrm{M}=\mathrm{N}$) into sum of a constant and ${ }_{\mathrm{a}}$ proper rational function we get

$$
\frac{X(z)}{z}=1+\frac{5 z-3}{(z-1)(z-3)}
$$

The rational expression can be expanded by Partial fraction expansion

$$
\frac{5 z-3}{(z-1)(z-3)}=\frac{C_{1}}{z-1}+\frac{C_{2}}{z-3}
$$

where

$$
\begin{aligned}
& \dot{C}_{1}=\left.(z-1) \frac{(5 z-3)}{(z-1)(z-3)}\right|_{z=1}=-1 \\
& C_{2}=\left.(z-3) \frac{(5 z-3)}{(z-1)(z-3)}\right|_{z=3}=6
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \frac{X(z)}{z}=1-\frac{1}{z-1}+\frac{6}{z-3} \\
& X(z)=z-\frac{z}{z-1}+\frac{6 z}{z-3}
\end{aligned}
$$

Taking Inverse z-transform on both sides we get

$$
x(n)=\delta(n+1)-u(n)+6(3)^{n} u(n)
$$

Example 3.40

Use the residue method to find the inverse z-transform of

$$
X(z)=\frac{z}{(z-2)(z-3)}|z|<2
$$

Solution:

In this case there are two poles $z=3$ and $z=2$ outside the $R O C|z|<2$, so the sequence is non causal.

For $\mathrm{n}<0$

Example 3.41

Find the inverse z-transform of $X(z)=\frac{z^{2}+z}{(z-1)(z-3)}$, ROC : $|z|>3$. Using (a) Partial fraction expansion method (b) Residue method (c) Convolution Method.

P-183
(b) $e^{2}:-3.41$
A) Here ROC is $|z| y 3$, so the sequence is causal signal. Because ROC is outward of the outermost
pole:
Here the Poles available $z=1,3$ having order $m=$: Residue al pole $z=1$ having corder $m=1$:-

$$
\begin{aligned}
R_{1} & =\lim _{z \rightarrow 1}\left[(z-1) \not x(z) \cdot z^{n-1}\right] \\
& =\lim _{z \rightarrow 1}\left[(z-1) \cdot \frac{z^{2}+z}{(z-1)(z-3)} \cdot z^{n-1}\right]=\lim _{z \rightarrow 1}\left[\frac{z^{\prime}(z+1) \cdot z^{n}, z^{-1}}{z+3}\right] \\
& =\lim _{z \rightarrow 1}\left[\frac{(1+1) \cdot(1)^{n}}{1-3}\right]=\frac{2 \cdot 1}{-2}=-1
\end{aligned}
$$

Residue at Pole $z=3$;

$$
\begin{aligned}
& R_{2}=\lim _{z \rightarrow 3}\left[(z-3) \cdot x \cdot(z) \cdot z^{n-1}\right] \\
& =\lim _{z \rightarrow 3}\left[(z-3) \cdot z^{2}+\frac{(z-1)(z-3)}{(z)} z^{n-1}\right] \\
& =\lim _{z \rightarrow 3}\left[\frac{z^{\prime}(z+1) \cdot z^{n} \cdot z^{-1}}{(z-1)}\right]=\frac{3+1 \cdot 3^{n}}{3-1}=\frac{4(3)^{n}}{2} \\
& \therefore x(n)=R_{1}+R_{2}=\left[-1+2(3)^{n}\right] \cup(n)
\end{aligned}
$$

E.rimple 3.45

Find the system function, $H(z)$ and unit-sample response $h(n)$ of the system whose difference equation is described as under :

$$
y(n)=\frac{1}{2} y(n-1)+2 x(n)
$$

where $y(n)$ and $x(n)$ are the output and input of the system, respectively.
Solution: The given difference equation is

$$
y(n)=\frac{1}{2} y(n-1)+2 x(n)
$$

Taking the z-transform of above difference equation, we get

$$
y(z)=\frac{1}{2} z^{-1} Y(z)+2 X(z)
$$

or $\quad Y(z)\left[1-\frac{1}{2} z^{-1}\right]=2 X(z)$
or

$$
\mathrm{H}(\mathrm{z})=\frac{\mathrm{Y}(\mathrm{z})}{\mathrm{X}(\mathrm{z})}=\frac{2}{1-\frac{1}{2} z^{-1}}=x(z)=z[S(n)]=1
$$

$$
\text { So } / p \text { is impulse response } y(n)=h(n) \text {. }
$$

This system function has a pole at $\mathrm{z}=\frac{1}{2}$ and zero at $\mathrm{z}=0$.

$$
H(z)=\frac{2}{1-\frac{1}{2} z^{-1}}=\text { system function }
$$

Also,

$$
h(n)=\text { Inverse } z \text {-transform of } H(z)=Z^{-1}\left[\frac{2}{1-\frac{1}{2} z^{-1}}\right]
$$

or, $\quad h(n)=2\left(\frac{1}{2}\right)^{n} u(n)$
This is the unit-sample response of the system.
Ans.

Exalliple 3.49

Determine the causal signal $x(n)$ having the z-transform

$$
X(z)=\frac{1}{\left(1-2 z^{-1}\right)\left(1-z^{-1}\right)^{2}}
$$

f-173

$$
\varepsilon_{x}:-3.49
$$

A) By using Residue mitred

$$
\begin{aligned}
& x(z)=\frac{1}{(1-2 z)\left(1-z^{-1}\right)^{2}}=\frac{1}{\left(\left(-\frac{2}{z}\right)\left[1-\frac{1}{z}\right]^{2}\right.} \\
& =\frac{1}{\left(\frac{z-2}{z}\right)\left(\frac{z-1}{z}\right)^{2}}=\frac{1}{\left(\frac{z-2}{z}\right) \cdot\left[\left(\frac{z-1)^{2}}{z^{2}}\right]=\frac{1}{\frac{(z-z)(z-1)^{2}}{z^{3}}}\right.}
\end{aligned}
$$

$=\frac{z^{3}}{(z-2)(z-1)^{2}}$; Here $x(z)$ is having two poles at $z=$ chaining order 1 , at $z=1$, having order $m=2$.
Residue at pole $z=2$:-

$$
\begin{aligned}
& R_{1}=\lim _{z \rightarrow 2}\left[(z-2) \cdot x(z) \cdot z^{n-1}\right]=\lim _{z \rightarrow 2}\left[\frac{\left.z-2 \cdot \frac{z^{3}}{(z-2)(z-1)^{2}} \cdot z^{A-1}\right]}{=}\right. \\
& \lim _{z \rightarrow 2}\left[\frac{z^{3}}{(z-1)^{2}} \cdot z^{n * 4} z^{-1}\right]=\lim _{z \rightarrow 2}\left[\frac{z^{2} \cdot z^{n}}{(z-1)^{2}}\right] \\
& =\frac{2^{2} \cdot 2^{n}}{(z-1)^{2}}=4 \cdot 2^{n}
\end{aligned}
$$

Residue at pole $z=1$ having order $m=2$: $01=1$

$$
1!=1
$$

$$
R_{2}=\frac{1}{(m-1)!} \lim _{z \rightarrow 1} \frac{d^{m-1}}{d z^{m-1}}\left[(z-1)^{m} \cdot x(z) \cdot z^{n-1}\right]
$$

$$
\begin{aligned}
& \text { Here ; } m=2 \\
& =1 . \lim _{z \rightarrow 1} \frac{d}{d z}\left[(z-1)^{2} \frac{z^{\rho}}{(z-2)(z-1)^{2}}: z^{n-1}\right] \\
& =\lim _{z \rightarrow 1} \frac{d}{d z}\left[\frac{z^{3} \cdot z^{-1}, z^{n}}{z-2}\right]=\lim _{z \rightarrow 1} \frac{d}{d z}\left[\frac{z^{n+2}}{z-2}\right] \\
& =\lim _{z \rightarrow 1} \frac{\frac{d z^{n+2}}{d z} \cdot(z-2)-z^{n+2} \cdot \frac{d(z-2)}{d z}}{(z-2)^{2}} \\
& =\lim _{z \rightarrow 1} \frac{(x+2) \cdot z^{n+2-1}(z-2)-z^{n+2} \cdot 1}{(z-2)^{2}} \\
& =\lim _{z \rightarrow 1} \frac{n+2 \cdot z^{n+1} \cdot(z-2)-z^{n+2}}{(z-2)^{2}} \\
& \lim _{z \rightarrow 1} \frac{n+2 \cdot z^{n} \cdot z^{1} \cdot(z-2)-z^{n} \cdot z^{2}}{(z-2)^{2}} \\
& =\frac{n+2 \cdot 1^{n} \cdot 1^{\prime}:(1-2)-1^{n} \cdot 1^{2}}{(1-2)^{2}}=\frac{-(n+2)-1}{1} \\
& =-n-3=-(n+3) \\
& \therefore x(n)=R_{1}+R_{2} \text {. } \\
& =\left[4(2)^{n}-(n+3)\right] v(n)
\end{aligned}
$$

NOTE: $-z[x(n-1)]=Z^{-1} \times(z)+x(-1)$
where $x(-1)$ represent the instal condition.

$$
z[x(n-2)]=z^{-2} x(z)+z-x(-1)+x(-2)
$$

$$
z[x(n-3)]=z^{-3} \cdot x(z)+z^{-2} \cdot x(-1)+z^{-1} \cdot x(-2)+x(-3)
$$

where $x(-1), x(-2), x(-3)$ are initial conditions
Que. Solve the difference equation

$$
\begin{aligned}
& \text { Solve the af } x(n) \text {, where } x(n) \text { is }\left(\frac{1}{2}\right)^{n} \cdot v(n) \\
& \text { \& } y(-1)=2 \text {. }
\end{aligned}
$$

A) Apply z-transform on both sides to the given difference equation.

$$
\begin{aligned}
& y(t z)+3\left[z^{-1} \cdot y(z)+y(-1)\right]=x(z) \\
& \Rightarrow\left.y(z)+3\left[z^{-1} y(z)+3 z\right)\right]=x(z) \\
& \Rightarrow x(z)+3 z^{-1}, y(z)+6=x(z) \\
& \Rightarrow y(z)\left[1+3 \cdot z^{-1}\right]=-6+x(z) \\
& \Rightarrow y(z)=\frac{-6}{1+3 z^{-1}}+\frac{x(z)}{\left(1+3 z^{-1}\right)}=\frac{-6}{1+3 z^{-1}}+\frac{1}{\left(1+3 z^{-1}\right)\left(1-\frac{1}{2} z\right)} \\
& \Rightarrow y(z)=\frac{-6}{1+3 z^{-1}}+\frac{A}{1+3 z^{-1}}+\frac{B}{1-\frac{1}{2} z^{-1}} \\
& A= \lim _{z^{-1} \rightarrow-1 / 3}\left(1+3 z^{-1}\right) \frac{1}{\left(1+3 z^{-1}\right)\left(1-\frac{1}{2} z^{-1}\right)} \\
&= \frac{1}{1-\frac{1}{2} \times\left(-\frac{1}{3}\right)}=\frac{1}{1+1 / 6}=\frac{6}{7} \\
& B= \lim _{6}\left(1-\frac{1}{2} z^{-1}\right) \cdot \frac{1}{\left(1+3 z^{-1}\right)\left(1-\frac{1}{2} z^{-1}\right)} \\
& z^{-1} \rightarrow 2 \\
&= \frac{1}{1+3 \times z}=\frac{1}{1+6}=\cdot 1 / 7 \\
& \therefore y(z)=-6 \cdot \frac{1}{1+3 z^{-1}}+\frac{6}{7} \cdot \frac{1}{1+3 z^{-1}}+\frac{1}{7} \cdot \frac{1}{1-\frac{1}{2} z^{-1}}
\end{aligned}
$$

Applying z-inverse transform on both sides ureavill get $\Rightarrow Y(n)=-6(-3)^{n}, v(n)+\frac{6}{7}(-3)^{n}, v(n)+\frac{1}{7}\left(\frac{1}{2}\right)^{n}, v(n)$

$$
\Rightarrow f(n)=\frac{-36}{7} \cdot(-3)^{n} \cdot v(n)+\frac{1}{7} \cdot\left(\frac{1}{2}\right)^{n} \cdot v(n)
$$

Example 3.54

Determine the impulse response and the step response of the following causal system.
Determine it is stable or not.

$$
y(n)=\frac{3}{4} y(n-1)-\frac{1}{8} y(n-2)+x(n)
$$

$$
y(n)=\frac{3}{4} y(n-1)-\frac{1}{8} y(n-2)+x(n)
$$

Inpulse response means $x(n)=\sigma(n)$, here $y(n)=h(n)$
Applying Z - transform to equation (1),

$$
\begin{aligned}
& Y(z)=\frac{3}{4} Z^{-1} Y(z)-\frac{1}{8} z^{-2} Y(z)+X(z) \\
& \Rightarrow Y(z)\left[1-\frac{3}{4} z+\frac{2}{8} z^{-2}\right]=X(z) \\
& \Rightarrow \frac{Y(z)}{X(z)}=\frac{1}{1-\frac{3}{4} z^{-1}+\frac{1}{8} z}-2 \\
& \Rightarrow H(z)=\frac{8 z^{2}}{8 z^{2}-6 z+1} \\
& \Rightarrow \frac{H(z)}{z}=\frac{8 z}{8 z^{2}-6 z+1} \\
& =\frac{8 z}{(2 z-1)(4 z-1)} \\
& =\frac{A}{1 z-1}+\frac{B}{4 z-1} \\
& A=\left.\frac{8 z}{4 z-1}\right|_{z=\frac{1}{2}}=4= \\
& B=\left.\frac{8 z}{2 z-1}\right|_{z=\frac{1}{4}}=-4 \\
& \frac{H(z)}{z}=\frac{4}{2 z-1}-\frac{4}{4 z-1} \Rightarrow 1+(z)=\frac{4 z}{2 z-1}-\frac{4 z}{4 z-1} \\
& \Rightarrow \mathrm{~h}(\mathrm{n})=\left[2\left(\frac{1}{2}\right)^{\mathrm{n}}-\left(\frac{1}{4}\right)^{\mathrm{n}}\right] \mathrm{u}(\mathrm{n})
\end{aligned}
$$

For step response, $x(n)=u(n)$

$$
\Rightarrow X(z)=\frac{Z}{z-1}
$$

So $Y(z)=H(z) X(z)$

$$
\begin{aligned}
& \begin{aligned}
& =\left[\frac{4 z}{2 z-1}-\frac{4 z}{4 z-1}\right] \cdot \frac{z}{z-1} \\
& =\frac{8 z^{2}}{(z-1)(2 z-1)(4 z-1)} \\
\Rightarrow \frac{Y(z)}{z} & =\frac{8 z}{(z-1)(2 z-1)(4 z-1)} \\
& =\frac{A}{z-1}+\frac{B}{2 z-1}+\frac{C}{4 z-1} \\
A & =\left.\frac{8 z}{(2 z-1)(4 z-1)}\right|_{z=1}=\frac{8}{3} \\
B & =\left.\frac{8 z}{(z-1)(4 z-1)}\right|_{z=\frac{1}{2}} \\
& =-8 \\
& =\frac{2}{\left(\frac{-3}{4}\right)\left(\frac{-1}{2}\right)} \\
& =\frac{16}{3}
\end{aligned}
\end{aligned}
$$

So $Y(z)=\frac{8}{3} \frac{z}{z-1}-4 \frac{2 z}{2 z-1}+\frac{4}{3} \frac{4 z}{4 z-1}$

$$
y(n)=\frac{8}{3} u(n)-4\left(\frac{1}{2}\right)^{n} u(n)+\frac{4}{3}\left(\frac{1}{4}\right)^{n} u n
$$

Example 3.55

We want to design a causal discrete-time LTI system with the property that if the input is.

$$
x(n)=\left(\frac{1}{2}\right)^{n} u(n)-\frac{1}{4}\left(\frac{1}{2}\right)^{n-1} u(n-1)
$$

then the output is

$$
y(n)=\left(\frac{1}{3}\right)^{n} u(n)
$$

(a) Determine the impulse response $h(n)$ and the system function $H(z)$ of a system that satisfies the foregoing conditions.
(b) Find the difference equation that characterizes this system.
(c) Determine if the system is stable.

Solution :

$$
\begin{aligned}
& x(n)=\left(\frac{1}{2}\right)^{n} u(n)-\frac{1}{4}\left(\frac{1}{2}\right)^{n-1} u(n-1) \\
& y(n)=\left(\frac{1}{3}\right)^{n} u(n) \\
& X(z)=\frac{1}{1-\frac{1}{2} z^{-1}}-\frac{1}{4} z^{-1} \frac{1}{1-\frac{1}{2} z^{-1}} \\
& =\frac{2 z}{2 z-1}-\frac{1}{2} \frac{1}{2 z-1} \\
& =\frac{4 z-1}{2(2 z-1)} \\
& Y(z)
\end{aligned}
$$

(a) $\mathrm{H}(\mathrm{z})=\frac{\mathrm{Y}(\mathrm{z})}{\mathrm{X}(\mathrm{z})}$

$$
\begin{aligned}
& =\frac{6 z(2 z-1)}{(3 z-1)(4 z-1)} \\
\Rightarrow \frac{H(z)}{Z} & =\frac{6(2 z-1)}{(3 z-1)(4 z-1)}
\end{aligned}
$$

$$
=\frac{A}{3 z-1}+\frac{B}{4 z-1}
$$

$$
A=\left.\frac{6(2 z-1)}{4 z-1}\right|_{z=\frac{1}{3}}
$$

$$
\begin{aligned}
& =\frac{6 \cdot\left(\frac{-1}{3}\right)}{\frac{4}{3}-1}=-6 \\
B & =\left.\frac{6(2 z-1)}{3 z-1}\right|_{z=\frac{1}{4}} \\
& =\frac{6\left(\frac{-1}{2}\right)}{\frac{-1}{42}}=12
\end{aligned}
$$

$$
H(z) \frac{-6 z}{3 z-1}+\frac{12 z}{4 z-1}
$$

Ans (a)

$$
\Rightarrow \mathrm{h}(\mathrm{n})=-2 \cdot\left(\frac{1}{3}\right)^{\mathrm{n}} \mathrm{u}(\mathrm{n})+3\left(\frac{1}{4}\right)^{\mathrm{n}} \mathrm{u}(\mathrm{n})
$$

(b) $\quad \mathrm{H}(\mathrm{z})=\frac{\mathrm{Y}(\mathrm{z})}{\mathrm{X}(\mathrm{z})}=\frac{6(\mathrm{z})(2 \mathrm{z}-1)}{(3 \mathrm{z}-1)(4 \mathrm{z}-1)}$

$$
\begin{aligned}
& \Rightarrow \frac{Y(z)}{X(z)}=\frac{12 z^{2}-6 z}{12 z^{2}-7 z+1} \\
& \Rightarrow 12 z^{2} Y(z)-7 z Y(z)+Y(z)=12 z^{2} X(z)-6 z X(z)
\end{aligned}
$$

So difference equation is,

$$
12 y(n+2)-7 y(n+1)+y(n)=12 x(n+2)-6 x(n+1)
$$

(c) $\sum_{n=-\infty}^{\infty}|\mathrm{h}(\mathrm{n})|$

$$
\begin{aligned}
& =\left|-2 \frac{1}{1-\frac{1}{3}}+3 \frac{1}{1-\frac{1}{4}}\right| \\
& =|-3+4|=1 \leq \infty
\end{aligned}
$$

so it is a stable system.

DISCRETE TIME FOURIER, TRANSFORM (DTFT)
\rightarrow It $x(n)$ is Discrete Time signal Then DTFT is given by

$$
\begin{aligned}
& \text { TFT is given by } x(n)=e^{j w i=-\infty} \\
& x(\omega)=x\left(e^{j w}\right)=\sum_{n=-\infty}^{\infty} x(n) \text { is }
\end{aligned}
$$

\rightarrow in Time Domain the signal is Discrecte. But in frequency Domain the signal is continuous and periodic over the range ii:
\rightarrow In DTFT The Time Domain signal is Discrete and Non periodic and the frequency Domain signal is continuous and periodic.
\rightarrow similarly from $x(W)$ we can obtain Tine domain signal $a(n)$ as:

$$
x(n)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} x(w) \cdot e^{j w n} \cdot d w
$$

\rightarrow DTFT obeys periodicity property, such as

$$
x(\omega+2 \pi k) \equiv x(\omega)
$$

where K is integer.
Que: If $x(n)=a^{n}, v(n)$, Then Find DTFT or given Signal.
Son:- $x(n)=a^{n} ;$ fore $n \geqslant 0 \quad$ [Because un)

$$
\begin{aligned}
& =a^{\prime} ; \text { for en } \quad=0 ; \text { for en } \geqslant 07 \\
& =0 ; n<0
\end{aligned}
$$

$$
\left.\begin{array}{rl}
=0 ; \quad n<0 \\
x(w) & =\sum_{n=-\infty}^{\infty} x(n) \cdot e^{\cdots j \omega n}=\sum_{n=0}^{\infty} a^{n} \cdot e^{-j \omega n} \\
& =\sum_{n=0}^{\infty}\left(a \cdot e^{-j \omega}\right)^{n}=1+a \cdot e^{-j \omega}+\left(a \cdot c^{-j \omega}\right)^{2}+ \\
& =\left(a \cdot e^{-j \omega}\right)^{3}+\cdots \\
\frac{1}{1-a \cdot e^{-j w}}\left[\operatorname{since}_{n=0}^{\infty} x^{2}=1+x+x^{2}+x^{3}+\right. \\
1-x
\end{array}\right]
$$

$$
\text { Similarly }(-a)^{n}, v(n) \stackrel{\text { DTFT }}{\longleftrightarrow} \frac{1}{1+a \cdot e^{-j \omega T}}
$$

Que:- Find DTFT of given signal $x\left(n^{n}\right)$

Son:- Given signal is

$$
\begin{aligned}
& x[n]=\left\{\frac{1}{2}, 1, \frac{3}{2}, \underset{\uparrow}{\uparrow}, \frac{3}{2}, \frac{1}{\uparrow}, \frac{1}{2}\right\} \\
& \begin{array}{c}
\left.n=-3, \begin{array}{c}
n=-2 n=-1 \\
-j \omega n
\end{array} \quad{ }_{n} \prod_{n=1} \quad{ }_{n=2} \quad \begin{array}{l}
n=3
\end{array}\right]
\end{array} \\
& x(w)=\sum_{n=-3}^{3} x[n] \cdot e^{-j \omega n} \\
& \begin{array}{l}
n=-3 \\
=x(-3) \cdot e^{-j \omega(-3)}+x(-2) \cdot e^{-j \omega(-2)}+x(-1) \cdot e^{-j \omega(-1)}
\end{array} \\
& \neq x(0) \cdot e^{-j \omega(0)}+x(1) \cdot e^{-j \omega(1)}+x(2) \cdot e^{-j \omega(2)} \\
& +x(3) \cdot e^{-j \omega(3)} \\
& =\frac{1}{2} \cdot e^{j \omega_{3}}+1 \cdot e^{j \omega_{2}}+\frac{3}{2} \cdot e^{j \omega}+2 \cdot e^{0}+\frac{3}{2} \cdot e^{-j \omega} \\
& +1 \cdot e^{-j 2 \omega}+\frac{1}{2} \cdot e^{-j \omega 3} \\
& =\frac{1}{2}\left[e^{-j \omega_{3}}+e^{j \omega_{3}}\right]+1 \cdot\left[e^{j \omega_{2}}+e^{-j \alpha^{\omega}}\right] \\
& +\frac{3}{2}\left[e^{-j \omega}+e^{-j \omega}\right]+2 \\
& =\frac{1}{2} \times 2\left[\frac{e^{j \omega 3}+e^{-j 3 w}}{2}\right]+2\left[\frac{e^{j 2 \omega}+e^{-j 2 \omega}}{2}\right] \\
& +\frac{3}{2} \cdot 2\left[\frac{e^{j \omega}+e^{-j \omega}}{2}\right]+2 \\
& =\cos 3 \omega+2 \cdot \cos 2 \omega+3 \cdot \cos \omega+2
\end{aligned}
$$

Here signal is even symmetry.

$$
\Gamma \cos a=e^{j \theta}+e^{-j \theta} 7
$$

Que: \& The signal $x[n]=\left(\frac{1}{2}\right)^{n} \cdot v(n), y(n)=x^{2}(n)$ Find DTFT fore the signal $y(n)$ ice. $Y\left(e^{j u}\right)$ and $Y\left(e^{j \cdot 0}\right)$
Sol:- Given that $x(n)=\left(\frac{1}{2}\right)^{n}, u(n)$,

$$
\begin{aligned}
& \text { Given that } \\
& y(n)=x^{2}(n)=\left[\left(\frac{1}{2}\right)^{n} \cdot v(n)\right]^{2}=\left(\frac{1}{2}\right)^{2 \cdot n} \cdot v(n) \\
&=\left(\frac{1}{4}\right)^{n} \cdot v(n)
\end{aligned}
$$

$$
\begin{aligned}
& \text { How DTFT fore the signal } y(n) \text { is } \\
& Y(W)=\gamma\left(e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} y[n] \cdot e^{-j \omega n} \\
& =\sum_{n=0}^{\infty} \frac{\left(\frac{1}{4}\right)^{n} \cdot(u(n)}{n=+\infty} \cdot e^{-j w n}=\sum_{n=0}^{\infty}\left(\frac{1}{4}\right)^{n} \cdot 1 \cdot e^{-j w n} \\
& =\sum_{n=0}^{\infty}\left(\frac{1}{4} \cdot e^{-j \omega}\right)^{n} \text { 薷 } \\
& =\left(\frac{1}{4} \cdot e^{-j \omega}\right)^{0}+\left(\frac{1}{4} \cdot e^{-j \omega}\right)^{1}+\left(\frac{1}{4} \cdot e^{-j \omega}\right)^{2}+\left(\frac{1}{4}-e^{-j \omega}\right)^{3} \\
& =\frac{1}{1-\frac{1}{4} e^{-j \omega}} \quad\left[\begin{array}{rl}
\because \sum_{n=0}^{\infty} a^{1} & =a^{0}+a^{1}+a^{2}+\cdots \\
& =\frac{1}{1-a} \\
\text { Take } a=1
\end{array}\right. \\
& Y(0)=Y\left(e^{j \cdot 0}\right)=\frac{1}{1-\frac{1}{4} \cdot e^{-j \times 0}}=\frac{1}{1-\frac{1}{4} \times 1}\left[e^{-0}=1\right] \\
& =\frac{1}{\frac{4-1}{4}}=\frac{4}{3}
\end{aligned}
$$

$Y(0)=$ spectrum at origin

$$
\begin{aligned}
Y(0) & =\sum_{n=-\infty}^{\infty} y[n] \cdot e^{-j w n} \Rightarrow Y(0)=\sum_{n=-\infty}^{\infty} y[n] \cdot e^{-j \cdot 0 \cdot n} \\
& \Rightarrow Y(0)=\sum_{n=-\infty}^{\infty} y[n]
\end{aligned}
$$

\Rightarrow Frequency Domain $=$ sum of Time domain signals signal aturigin = Area under time Domain
\qquad signal.

DFT (Discrete Fourtice Treansforem):-
L Here Time domain signal is periodic, Discrete and frequency Domain signal is also Discrete and periodic.

DIscreete Fourier Transform [D.F.T.] :- (1)

$$
\begin{align*}
& x[n] \stackrel{N-\text { point }}{\stackrel{\text { DFT }}{ }} \times(k) \\
& X(K)=\sum_{n=0}^{N-1} x[n] \cdot e^{-j \frac{2 \pi}{N} k n}, k=0,1,2, \cdots N-1 \\
& x(n)=\frac{1}{N} \sum_{k=0}^{N-1} x(k) \cdot e^{j 2 \pi k n}, n=0,1,2, \cdots N-1 \tag{2}\\
& \omega_{N} \equiv e^{-j 2 \pi / N}=\text { phase factore, Twiddle Factore } \\
& X(k)=\sum_{n=0}^{N-1} x(n) \cdot w_{n}^{k n}, x(n)=\frac{1}{N} \sum_{k=0}^{N-1} x(k) \cdot w_{n}^{-k n}
\end{align*}
$$

\rightarrow In Discrete Time Fourcier Transforen (D.T.F.T.)

$$
\begin{aligned}
& x[n] \stackrel{\text { Discrec.F. }}{\stackrel{j w}{\rightleftarrows} \times\left(e^{j w}\right)} \\
& x\left(e^{j w}\right)=\sum_{n=-\infty}^{\infty} x[n] \cdot e^{-j w n}
\end{aligned}
$$

continvous Frequency, Discrecte Freequency $\omega_{d}=\frac{\text { Analog frequency }\left(\omega_{a}\right)}{T_{s}}$
Where, $T_{s}=$ Sampling intervat
Byputting $k=0$ in eqn-(1), $x(0)=\sum_{n=0}^{N-1} x[n]$

$$
\begin{equation*}
\Rightarrow x(0)=x[0]+x[1]+x[2]+\cdots+x[N-1] \tag{3}
\end{equation*}
$$

By putting $K=N / 2$ it A is even number in eq'(1)

$$
\begin{aligned}
& \begin{aligned}
& X\left(\frac{n 1}{2}\right)=\sum_{n=0}^{n-1} x \cdot(n) \cdot(-1)^{n} \\
&=x(0)-x[1]+x[2]-x[3]+x[4] \\
& e^{-j \frac{2 \pi}{x} \cdot \frac{x}{2} \cdot n}=e^{-j \pi n}=(-1)^{n}, e^{-j \pi}=-1
\end{aligned}
\end{aligned}
$$

By Adding Equation-(3) and Equation -(4)

$$
x(0)+x\left(\frac{N}{2}\right)=2[x(0)+x(2)+x(4)+\cdots \cdots]
$$

By Subtracting Equation-(4) From Equation- (3)

$$
\begin{aligned}
& x(0)-x\left(\frac{N}{2}\right)=2[x(1)+x(3)+x(5)+\cdots \cdot \cdot]
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\omega_{N}^{k n}\right] \begin{array}{l}
\text { in Matrix } \\
\text { format }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { In vector e form we can write } \\
& \quad X_{K}=\left[\omega_{N}\right] \cdot x_{N} \text { and } x_{N}=\frac{1}{N} \cdot\left[w_{N}\right]^{*} \cdot x_{K} \\
& X[K]=\sum_{n=0}^{N-1} x[n] \cdot \omega_{N}^{K n}, x[n]=\frac{1}{N} \sum_{K=0}^{N-1} x(k) \cdot \tilde{\omega}_{N}^{w_{N}}{ }^{-K}
\end{aligned}
$$

for $A n y 1$ value of k number of computational $\left(w_{N}^{*}\right)^{k n}$ Multiplications $=\sim \sim$, and Number of Additions $=(N-1)$, so M numbers of values for K^{\prime} ' the Total Number of Multiplications req wire $=N^{2}(N \cdot N)$ and Total Number of Additions require $=(N-1) \cdot N=N^{2}-N$
$\rightarrow \quad x(t) \stackrel{\sim}{\stackrel{\text { fourier Transform }}{\stackrel{j}{\infty} \omega_{a}}} \times(\omega)$
t. By sampling $\rightarrow n \cdot T_{s}$
$x(t) \longrightarrow x[n]$

$$
\begin{aligned}
& x\left(e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} x[n] \cdot e^{-j \omega_{a} \cdot n \cdot T_{s}} \\
&=\sum_{n=-\infty}^{\infty} x[n] \cdot e^{-j w_{d} \cdot n} \\
& w_{d}=w_{a} \cdot T_{s}, 2 \pi f_{d}=2 \pi f_{a} \cdot \frac{1}{f_{s}} \\
& F_{d}=\text { Digital frequency } \Rightarrow f_{d}=\frac{f_{a}}{f_{s}},
\end{aligned}
$$

$\mathrm{f}_{a}=$ Analog frequency,
$f_{s}=$ samping frequency.
properties of Twiddle factor:-

$$
\omega_{N}=e^{-j 2 \pi / N}
$$

(1) $w_{N}^{K+N}=w_{N}^{K}$,
(2) $w_{N}^{K+\frac{N}{2}}=-w_{M}^{K}$
(3) $\quad w_{n / 2}=w_{N}^{2}$

PROPERTIES OF DFT:-

$$
\begin{aligned}
& X(K)=\sum_{n=0}^{N-1} x[n] \cdot w_{N}^{k n}, K=0,1,2, \cdots N-1 \\
& x[n]=\frac{1}{N} \sum_{K=0}^{N-1} x(K) \cdot W_{N}^{-k n}, n=0,1,2, \ldots N-1
\end{aligned}
$$

(1) perciodicizy property:-

$$
\text { If } x(n+N)=x(n) \text { Then } x(n+N)=X(K)
$$

(2) Linearicty property:-

$$
\begin{aligned}
& \text { IF } x_{1}[n] \xrightarrow[\text { DFT }]{\longleftrightarrow} X_{1}(K) \\
& x_{2}[n] \stackrel{D F T}{\longleftrightarrow} X_{2}(M) \\
& \alpha \cdot x_{1}[n]+\beta \cdot x_{2}[n] \stackrel{D F T}{\longleftrightarrow} \alpha \cdot x(k)+\beta \cdot x_{2}(K)
\end{aligned}
$$

(3) Time shifting property:-

If $x[\cap] \stackrel{D F T}{\longleftrightarrow} X(K)$
Then, $x\left(\left(n-n_{0}\right)\right)_{N} \stackrel{D F T}{ }>x(k) \cdot e^{-j \frac{2 \pi}{N} k n_{0}}$

$$
\begin{aligned}
& x(K) \cdot \omega_{N}^{K n_{0}} \\
& x\left(\left(n+n_{0}\right)\right) N \stackrel{D F T}{ } X(K) \cdot e^{\frac{j 2 \pi}{N}} k n_{0} \\
& \approx X(K) \cdot W_{N}^{-k n_{0}}
\end{aligned}
$$

(4) Freequency shitting property:-

If $x[\cap] \longleftrightarrow D F T \longrightarrow X(K)$ Then

$$
x[n] \cdot e^{\frac{j 2 \pi \cdot l}{N} \cdot n} \stackrel{D F T}{\longleftrightarrow} X((k-l)) N
$$

(5) Expansion in Tine properety:-

InDIFT, $x[n] \stackrel{\text { DTFT }}{\longleftrightarrow} \times\left(e^{j \omega}\right)$, pericodice with 2π $x\left[\frac{n}{k}\right] \stackrel{\text { DTFT }}{\longleftrightarrow} X\left(e^{j \omega k}\right)$, periodic with $\frac{2 \pi}{k}$
In DFT, $x[n] \longleftrightarrow x(k)$

$$
\begin{aligned}
& \underbrace{x}_{1(0), X(1), x(2), \cdots x(N-1)}\} \\
& x(n)=\left\{5,6,7,8\left\{\begin{array}{c}
\text { kth Repetition } \\
5
\end{array}\right.\right. \\
& \text { = } \left.x((2 n))_{n}\right\} 5 \\
& \text { in Anticlochwise Direction }
\end{aligned}
$$

(6) circular convolution:-

$$
\begin{aligned}
& x_{1}[n] \leftarrow \text { oFT } \underset{x_{1}(k), ~}{x_{2}[n]} \stackrel{D F T}{\longleftrightarrow} x_{2}(k) \\
& \omega(n)=x_{1}(n) \underset{\substack{\uparrow \\
\text { circular }}}{\mathbb{N})} x_{2}(n)=\sum_{m=0}^{N-1} x_{1}(m) \cdot x_{2}((n-m)) N \\
& \text { circular } \\
& \text { convolution }
\end{aligned}
$$

$x_{1}(n), x_{2}(n)$ sequence having equal length l.
other wise zeropadding will occure in the sequence, which has less number of samples.

$$
\omega(n)=x_{1}(n)(N) x_{2}(n) \stackrel{\text { DFT }}{\longleftrightarrow} x_{1}(K) \cdot x_{2}(K)
$$

(7) Multiplication property:-

$$
x_{1}[n] \cdot x_{2}[n] \longleftrightarrow \text { DFT } \frac{1}{N} \cdot\left[x_{1}(k) \text { N } x_{2}(k)\right]
$$

Que:- Find circular e convolution between Two sequence

$$
x_{1}(n)=\{2,3,4,5\}, x_{2}(n)=\{5,6,2,1\}
$$

Son: $y(n)=x_{1}(n) \mathbb{N} x_{2}(n)$

$$
\begin{aligned}
0 \text { in } y(n) & =x_{1}(n)(N)
\end{aligned} x_{2}(n) 1\left[\begin{array}{llll}
2 & 5 & 4 & 3 \\
y(0) \\
y(1) \\
y(2) \\
y(3)
\end{array}\right]=\left[\begin{array}{lll}
5 \\
6 \\
4 & 2 & 5
\end{array}\right]=\left[\begin{array}{l}
10+30+8+3 \\
5 \\
15+12+10+4 \\
20+18+4+5 \\
25+24+6+2
\end{array}\right]
$$

Que:- N-point DFT of $x[n]=a^{n}$, $0 \leqslant n \geqq N-1$ is $X(K)$. Then the value of $x(K)$ for $k=2$, $a=0.5$ and $N=4$ is
son:-

$$
\begin{aligned}
x(k) & =\sum_{n=0}^{N-1} x[n] \cdot e^{-j 2 \pi k n} N \\
& =\sum_{n=0}^{N-1} a^{n}\left(a \cdot\left(e^{-\frac{-j 2 \pi K}{N}}\right)^{n}\right.
\end{aligned}
$$

we know, $\sum_{n=0}^{N} a^{n}=\frac{1-a^{N+1}}{1-a}$
By applying this, to above Equation, we wéllget

$$
\begin{gathered}
=\frac{1-\left(a \cdot e^{-\frac{j 2 \pi K}{K}}\right)^{N}}{1-a \cdot e^{-j 2 \pi K / N}} \quad \begin{array}{l}
\text { putting } K=2 \\
\Rightarrow X(K)=\frac{1-(a)^{N}}{1-a \cdot e^{-j 2 \pi K / N}} \Rightarrow X(2)=\frac{1-(0.5)^{4}}{1-0.5 e^{-j \pi / 2 / 2 / 4}} \\
\Rightarrow X(2)=\frac{1-(0.5)^{4}}{1-0.5 e^{-j \pi}}, e^{-j \pi}=-1 \\
1-0.0625
\end{array}=0.625
\end{gathered}
$$

$$
=\frac{1-0.5 e}{1-0.5 \times(-1)}=0.625
$$

(8). CIRCULAR REVERSAL:- $\times x-x-x-$
(9.) Circularly Even sequence:-

$$
x(N-n)=x(n), 1 \leqslant n \leqslant N-1
$$

The sequence will be symmetrical about origin point $\cdot x[n]=\{2,3,4,5,6,5,4,3\}$
\rightarrow It is circularly even sequence

$$
\begin{aligned}
& \xrightarrow[{\text { If } X[n]} ~]{\text { DsT }} X X(K) \text { Then } \\
& x((-n))_{N} \stackrel{D F T}{\longleftrightarrow} X((-K))_{N} \\
& x((-n))_{N}=x(N-n)
\end{aligned}
$$

(10) ciriecularly odd sequence:-

$$
\frac{\text { circularly }}{x((-n))_{N}=x(N-n)=-x(n) ;} 1 \leqslant n \leqslant N-1
$$

\rightarrow The sequence will be antisymmetric about the origin.

$$
\begin{aligned}
& \text { the origin. } \\
& x[\cap]=\{2,3,4,5,6,-5,-4,-3\} \\
& \uparrow
\end{aligned}
$$

Not circularly odd sequence. To be circularly odd sequence insted of 6 , there should be 0 .

(11) conjugate properest:-

If . $x[n] \longleftrightarrow$ DFT $x(K)$ Then

$$
x^{*}[n] \longleftrightarrow D F T \longleftrightarrow x^{*}((-K))_{N}
$$

(12) parseval's Relation:-

$$
\sum_{n=0}^{N-1}|x(n)|^{2}=\frac{1}{N} \cdot \sum_{k=0}^{N-1}|x(k)|^{2}
$$

(13) symmetry property of a real valued sequence:-

$$
x[n] \stackrel{D F T}{\longleftrightarrow} \times(K) \text {, Then }
$$

$$
x(N-K)=x^{*}(K)
$$

$$
\Rightarrow x(K)=X^{*}(N-K)
$$

Que:- If $x(k)=\left\{\begin{array}{l}5,2+j, 0,0,3+j, \\ x(0), x(1), x(2), x(3), x(4)\end{array},-,\right\}$
Then find the value of $x(0)$ is ..

$$
\begin{aligned}
& \text { son: }=x(n)=\frac{1}{N} \sum_{K=0}^{N-1} x[K] \cdot W_{N}^{*} n, x(0)=\frac{1}{N} \sum_{K=0}^{N-1} X(K) \\
& X(5)=X^{*}(8-5)=X^{*}(3)=0, x(6)=x^{*}(8-6)=x^{*}(2)=[0], \\
& X(7)=X^{*}(8-7)=x^{*}(1)=2-j
\end{aligned}
$$

$$
x(0)=\frac{1}{8}[x(0)+x(1)+x(2)+x(3)+x(4)+x(5)+x(6)+x(7)]
$$

Byputting all these values we will get $x(0)$
Que:- Two sequence $[x, b, c]$ and $[A, B, c]$ are related as

$$
\begin{aligned}
& \text { ve:- Two sequence }[a, b, c] \text { and }\left[A, B, W^{-j \frac{2 \pi}{3}}\right. \\
& {\left[\begin{array}{l}
A \\
B \\
c
\end{array}\right]=\left[\begin{array}{ccc}
1 & w_{3}^{1-1} & w_{3}^{-2} \\
1 & W_{3}^{-2} & W_{3}^{-4}
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] \text {, wheres } W_{3}=e^{-, ~ i s ~ d e r e i v e d ~ a ~}}
\end{aligned}
$$

It another sequence $[p, q, r]$ is derived as

$$
\begin{aligned}
& \text { It another e sequence }[p, q, r] \text { is } \\
& {\left[\begin{array}{l}
p \\
q \\
r
\end{array}\right]=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & w_{3}^{1} & W_{3}^{2} \\
1 & w_{3}^{2} & W_{3}^{4}
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & W_{3}^{2} & 0 \\
0 & 0 & W_{3}^{4}
\end{array}\right]\left[\begin{array}{c}
A / 3 \\
B / 3 \\
c / 3
\end{array}\right]} \\
& \text { Then the relation between sequences }
\end{aligned}
$$

Then the relation between sequences $[p, q, r]$ and $[a, b, c]$ is
(A) $\left[p, q, \frac{r}{r}\right]=[b, a, c]$, (B) $[p, q, r]=[b, c, a]$
(c) $[p, q, r]=[c, a, b],(D)[p, q, r]=[c, b, a]$
sol:-

$$
\sum_{n=-\infty}^{-1} a^{-n} \cdot e^{-\frac{j 2 \pi k n}{n}}, s=\sum_{n=-\infty}^{-1}\left(a \cdot e^{\frac{j 2 \pi k n}{n}}\right)^{-n}
$$

Let $-n=m$, when $n \rightarrow-\infty, m \rightarrow+\infty$

$$
\begin{aligned}
& n \rightarrow-1, m \rightarrow+1 \\
& \begin{aligned}
S=\sum_{m=1}^{\infty}\left(\underset{\text { take } A}{a \cdot e^{\frac{j \pi k k}{N}}}\right)^{m} & =A+A^{2}+A^{3}+\cdots . \\
& =A \cdot 1+A^{2}+A^{3}+.
\end{aligned} \\
& =A\left[1+A+A^{2}+A^{3}+\cdots\right] \\
& =A \cdot \sum_{n=0}^{\infty}(A)^{n}=A \cdot \frac{1}{1-A} \\
& {\left[\begin{array}{l}
x(0) \\
x(1) \\
x(2)
\end{array}\right]=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & W_{N}^{1} & W_{N}^{2} \\
1 & W_{N}^{2} & W_{N}^{4}
\end{array}\right]\left[\begin{array}{l}
x(0) \\
x(12) \\
x(2)
\end{array}\right], \begin{array}{l}
\sum_{n=0} \\
\text { if }
\end{array}} \\
& \text { of } W_{N}=e^{-j 2 \pi / N} \text { for } N=3 \\
& \text { here } \\
& \left.\begin{array}{l}
p \\
q \\
c
\end{array}\right]=\frac{1}{3}\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & W_{3}^{1} & W_{3}^{2} \\
1 & W_{3}^{2} & W_{3}^{4}
\end{array}\right]\left[\begin{array}{cc}
A \\
W_{3}^{2} \cdot B \\
W_{3}^{4} \cdot c
\end{array}\right], \quad \begin{array}{c}
x[n]=[a, b, c] \\
\vdots(k)=[A, B, c]
\end{array} \\
& x^{\prime}(n) \quad x^{\prime}(k)
\end{aligned}
$$

$$
\begin{aligned}
& x^{\prime}[n]=[p, q, r] \\
& x^{t}[K]=\left[\begin{array}{lll}
A, & W_{3}^{2} \cdot B, & W_{3}^{4} \cdot c
\end{array}\right] \\
& x[K]=\left[\begin{array}{ccc}
A, & B, & C \\
* & k & d
\end{array}\right. \\
& x(0), x(1), x(2) \\
& \text { pecan write, } x^{1}[k]=W_{N}^{2 k} \cdot x(k)
\end{aligned}
$$

$$
\begin{aligned}
N & =3 \text { it is given } \\
x^{\prime}[k] & =e^{\frac{2 \pi}{3} \cdot 2 k} \cdot x(K)
\end{aligned}
$$

we know, if $x[n] \xrightarrow{D F T} X(K)$ Then,

$$
\begin{aligned}
& e \text { Know, it } x[n] \\
& x((n+l))_{N} \stackrel{D F T}{j \frac{2 \pi K}{N} \cdot d} \cdot x(K)
\end{aligned}
$$

By comparing $l=2$ we will get.

$$
\begin{aligned}
& x[n]=[a, b, c] \\
& x((n+2))_{3} e^{\frac{j 2 \pi K}{N} \cdot 2} \cdot x(k)=x^{\prime}[K] \\
& \approx x^{\prime}[n]
\end{aligned}
$$

Therefore $x^{\prime}[n]=x((n+2))_{3}$

$$
[p, q, r]=[c, a, b]
$$

FAST FOURIER TRANSFORM (FFT):-
For calculating N-point ofT of $x(n)$,

$$
\begin{aligned}
& x(K)=\sum_{n=0}^{N-10} x[n] \cdot W_{N}^{K n}, \text { where } W_{N}=\text { Twiddle e factor } \\
& X[K]=x[0] \cdot W_{N}^{0 \cdot K}+x[1] \cdot W_{N}^{1 \cdot k}+x[2] \cdot W_{N}^{2 \cdot k}=e^{N}+\cdots+x[N-1] \cdot W_{N}^{(N-1) k} \\
& K=0,1,2, \cdots \cdots-1
\end{aligned}
$$

To calculate N-point DFT we require
(i) Total Number of complex Multiplications $=N \times N$

$$
=N^{2}
$$

(ii) Total Number of complex Additions $=N \cdot(N-1)$

$$
=N^{2}-N
$$

RELATION beTween dAt sequence And FOURIER SERIES COEFFICIENTS:-
The periodic sequence $x_{p}(n)$ with period N is

$$
x_{p}(n)=\sum_{K=0}^{N-1} c_{K} \cdot e^{j 2 \pi n k / N} \text {, where e }-\infty<n<\infty
$$

where c_{K} is fourier series coefficients.

$$
c_{K}=\frac{1}{N} \cdot \sum_{n=0}^{N-1} x_{p}(n) \cdot e^{-j 2 \pi k n / N} \text {, where } k=0,1, \cdots N-1
$$

If $x(n) \underset{\longleftrightarrow D F T}{\longleftrightarrow} x(k)$, By making inverse DF T

$$
\begin{equation*}
x(n)=\frac{1}{N} \cdot \sum_{k=0}^{N-1} x(k) \cdot e^{i 2} \tag{2}
\end{equation*}
$$

where $x(n)$ is Aperiodic sequence.

$$
x(n)=x_{p}(n) \text { in } 0 \leqslant n \leqslant N-1
$$

By comparing Equation (1) and Equation-(2)
we will get, $\mathrm{c}_{K}=\frac{X(K)}{N}$
(ore)

$$
X(K)=N \cdot c_{K}
$$

\qquad
RELATION OF DFT WITH Z-TRANISFORM:-
(1) DFT From z-Treansform

If $x(n)$ is sequence Then it's z-Transform is

$$
z[x(n)]=x(z)=\sum_{n=-\infty}^{\infty} x(n) \cdot z^{-n}
$$

If $x(z$.) is sampled on the unit circle and the sampling rate is uniform and the number of samples $\leq N$

Here radius $r=1$

$$
\begin{aligned}
& z_{k}=e^{\frac{j 2 \pi k}{k}} \\
& \text { *DFT } x(K)=\left.x(Z)\right|_{a t} z=\frac{\frac{j 2 \pi k}{e}}{e^{A}} \\
& x(k)=\sum_{n=-\infty}^{\infty} x(n) \cdot e^{\frac{j 2 \pi k n}{N}} \\
& x(n) \text { is lemited to } n=0,1,2, \cdots N \\
& \therefore x(k)=\sum_{n=0}^{N-1} x(n) \cdot e^{\frac{-j 2 \pi n k}{N}} \\
& x(z) \text { to DFT, } x(z)=\sum_{n=0}^{N-1} x(n) \cdot z^{-n} \text {, wheren }=0,1, \cdots \times N-1 \\
& =\sum_{n=0}^{N-1} \frac{1}{N} \sum_{k=0}^{N-1} x(k) \cdot e^{j 2 \pi k n / N} \cdot Z^{-n} \\
& =\frac{1}{N} \sum_{k=0}^{N-1} x(k) \cdot \sum_{n=0}^{N-1} e^{j 2 \pi k n / N} \cdot Z^{-n} \\
& =\frac{1}{N} \sum_{k=0}^{N-1} x(k) \cdot \sum_{n=0}^{N-1}\left(e^{\frac{j 2 \pi k}{N}} \cdot Z^{-1}\right)^{n} \\
& =\frac{1}{N} \cdot \sum_{K=0}^{N-1} x(K) \cdot \frac{1-\left(e^{j 2 \pi K / N} \cdot Z^{-1}\right)^{N} \quad\left[\begin{array}{l}
\because \sum_{n=0}^{N} a^{n} \\
=\frac{1-a^{N+1}}{1-a}
\end{array}\right]=Z^{-1}}{1-a \pi \pi / N} \\
& \left(e^{j 2 \pi k} \pi \cdot z^{-1}\right)^{N}=\frac{j 2 \pi k N}{e^{N}} \cdot z^{-N}=e^{j 2 \pi k} \cdot z^{-N}, e^{j 2 \pi k}=1 \\
& X(Z)=\frac{1-Z^{-N}}{N} \cdot \sum_{K=0}^{N-1} \frac{x(K)}{1-e^{j 2 \pi K / N /} \cdot Z^{-1}}
\end{aligned}
$$

This is the pelationship between DFT and Z-Ticansform.
\qquad

FILTERING OF LONG DATA SEQUENCES:- (7)

$$
x(n) \longrightarrow n(n) \longrightarrow y(n)
$$

It cain be very long
example:- real Time signal processing
\longrightarrow Linear filtering using DFT must be done on a block of input data.
\rightarrow At first Long data is segmented into Fixed Size 610 ks .
\rightarrow since the filtering is a linear process

\Leftrightarrow For segmentation, concatenation there are Two methods available:
(1) Overlap save Method, (2) overlap Add Method.

1) FT for Linear Filtering :-

$$
y(n)=x(n) * h(n)
$$

IDFT \rightarrow Inverse Discrete Fourier Transform
\qquad
\qquad

FAST FOURIER TRANSFORM (FFT) BaSics:-
\rightarrow It is fast computation algoreithm fore Discrete Fourier Transform (DFT).
\rightarrow In FFT we are taking array of Tine Domain waveform samples and producing array of Frequency domain spectrum samples.
\rightarrow al must be a power of a for FFT algorithm to be truly "fast".
\rightarrow In input side real valued samples we are giving, in output side complex valued samples wewilljet. Typically work with magnitude and phase Representation of the complex values.
\rightarrow Sampling Interval $\Delta t=\frac{T d}{N}$, sampling Frequency $\frac{1}{\Delta t}=\frac{N}{T}=F_{s}(A$ In time domain \uparrow
Similarly In frequency Domain, $\Delta f=\frac{B b}{N}=\frac{f_{s} \text { frequacy }}{N}=s p a c i n g$ $f_{\text {max }}=\frac{B_{b}}{2}=\frac{f_{s}}{2} \Rightarrow$ Typically display only Lower Halt of the output Array. Nigquist frequency
\rightarrow FFT is an efficient way (or) Algorithm to compute DFT with reeduee of computations. It is not a Transform. It is an algorithm.
Radix-2 FFT Algorithms:-
DIT
(Decimation in Tine)
DIE
(Decimation infreqyy
nide and conquer
Both Algorithms use Divide and conquer
APPROach.
\rightarrow we have to choose the signal length 'N'' such that it can be factored like

$$
N=r_{1} \cdot r_{2} \cdot r_{3} \cdot \cdots \cdot r_{m}
$$

If $r_{1}=r_{2}=\cdots=r_{n}=r$

$$
\text { Then } \quad \pi=r^{m}
$$

Where $r \rightarrow$ Represents Radix.
Fore Radix-2, $\quad \pi=2, \quad N=\alpha^{n}$ N-point DFT

like this It will continue the' Division array
proof:- $\omega_{k+\frac{N}{2}}^{2}$ \& $\frac{2 \pi}{2}(k+N) \omega_{N}^{k+\frac{N}{2}}=-\omega_{N}^{k}$
proof:- $\omega_{N} K+\frac{N}{2}=e^{-\frac{2 \pi}{N}\left(k+\frac{N}{2}\right)}=e^{-j \frac{2 \pi}{\lambda} \cdot k} \cdot e^{-j \frac{2 \pi}{\pi} \cdot \frac{N}{2}}$
(2) periodicity: $=e^{-j \frac{2 \pi}{N} \cdot k}, e^{-j \pi}=-\omega_{N}^{K}$
(3)

$$
\begin{aligned}
& \omega_{N}^{2}=e^{-j 24 / / N} \cdot(2)^{N}=\omega_{N}^{K} \\
&=e^{-j 2 \pi}(N / 2)
\end{aligned}=\omega_{N / 2}
$$

DIT-FFT [DECIMATION IN TAME]
Que:- Find the 8 point DFT of $x(n)$ $=\{1,1,1,1,1,1,1,0\{$ using radix -2 DIT-FFT algorithm. (ore)
compute the DFT fore the sequence $\{1,1,1,1,1,1,1,0\}$ using DIT-FFT algorithm. son:-

Here $\omega_{8}^{0}=1, \quad \omega_{8}^{\prime}=\frac{1}{\sqrt{2}}-j / \sqrt{2}, \omega_{8}^{2}=-j, \omega_{8}^{3}=-\frac{1}{\sqrt{2}}-j / \sqrt{2}$

$$
3 \times \omega_{8}^{0}=3 \times 1=3, \quad-j \times \omega_{8}^{\prime}=-j\left(\frac{1}{\sqrt{2}}-j / \sqrt{2}\right)=\left|\frac{-j}{\sqrt{2}}-\frac{1}{\sqrt{2}}\right|
$$

$$
\begin{aligned}
& 1 \times \omega_{8}^{2}=1 \times-j=-j, \quad j \times \omega_{8}^{3}=j\left(\frac{-1}{\sqrt{2}}-\frac{j}{\sqrt{2}}\right)=\frac{-j}{\sqrt{2}}+\frac{1}{\sqrt{2}} \\
& \text { Final DFT is } \times(K)=\{7,-0.707-10.707 .
\end{aligned}
$$

SO, Final DFT is $x(K)=\left\{\begin{array}{l}7,-0.707-j 0.707,-j, 0.707-j 0.707,\end{array}\right.$ $1,0.707+j 0.707, j,-0.707+j 0.707\}$

Que:- compute the DFT for the sequence $\{1,2,3$, $4,4,3,2,1\}$ using readix-2. DIF-FFT algorithm. sol:- Here $x(n)=\{1,2,3,4,4,3,2,1\}$

Here $\omega_{8}^{0}=1, \omega_{8}^{\prime}=\frac{1}{\sqrt{2}}-\frac{j}{\sqrt{2}}, \omega_{8}^{2}=-j, \omega_{8}^{3}=\frac{-1}{\sqrt{2}}-\frac{j}{\sqrt{2}}$

$$
\begin{aligned}
\text { Here } \omega_{8}^{0}=1, \\
-3 \times \omega_{8}^{0}=-3 \times 1=-3, \quad-1 \times \omega_{8}^{\prime}=-1\left(\frac{1}{\sqrt{2}}-\frac{j}{\sqrt{2}}\right)=\frac{-\frac{1}{\sqrt{2}}+\frac{j}{\sqrt{2}}}{1 \times \omega_{8}^{2}=1 \times(-j)=-j, \quad 3 \times \omega_{8}^{3}}=\begin{aligned}
& =3 \times\left(\frac{-1}{\sqrt{2}}-\frac{j}{\sqrt{2}}\right) \\
& =\frac{-3}{\sqrt{2}}-j \frac{3}{\sqrt{2}} \\
(-3+j) \times \omega_{8}^{0}=(-3+j) \times 1 & =-3+j \\
(1.414+j 2.828) \times w_{8}^{2} & =(1.414+j 2.828) \times(-j) \\
& =2.828-j 1.414
\end{aligned}
\end{aligned}
$$

$$
\therefore X(K)=\left\{\begin{array}{r}
20,-5.828-j 2.414,0,-0.172+j 0.414 \\
0,-0.172+j 0.414,0,-5.828+j 2.414\}
\end{array}\right.
$$

Que:- find 2 -point DiT-FFT Algorithm Butterfly Diagram.it $x(n)=\{0,1\}$, find $X(k)$
son:-

$$
w_{2}^{0}=1
$$

Que:- Find 4 -point DIT FFT Butterfly Diagram where $x(n)=\{1,2,3$ 是, 4$\}$
3017:-

Que:- Find 4-point DIF-FFT Butterfly Diagram where $x(n)=\{1,0,-1,0\}$
son:-

$$
\therefore x(K)=\left\{\begin{array}{l}
0,2,0,2\} \\
\uparrow
\end{array}\right.
$$

DIGITAL SIGNAL PROCESSING ARCHITECTURES:-
(1) von-Neumann Architecture:-

\rightarrow There is a common memory to store e programs as well as data:
\rightarrow The central processing unit can read an instruction ore reead/write data from/to the memory.
\rightarrow Both can not occur at the same time as the instruction and data use the same bus system. It has Data bus (Bidirectional), program/Address bus (unidirectional), control bus.
4 The main characteristics of von-Neuman Architecture is that it only posses one bus system. The same bus carries all information exchanged between cpu and peripherals including instruction codes as well as data processed cpu.
(2) Harevared Architectures:-

(i) Improve speed. of processing. (ii) simultaneously operations can be perebormed.
(iii) Single memory pathway is there. (iv) physically separate pathway is also there.
\rightarrow In Harevared architecture, Data and code tie in Different memory Block. In vonneuman Arechëtecture, Data and code lie in same memory block.
$\rightarrow 1$ data bus used for both instrevction and data. cpu can perform onlyone operation at a time in yon veuman Architecture.

All the buses i.e.Addrees ${ }_{3}$ bus, Data bus, control busaraccessing one memory block in vonaleing Arichezecturee.
\rightarrow Harevared Architecture e provides separate buses For both instruction and data. This arechitrcturee has data storage entirely contained with in the cpu.

\rightarrow In von-Neuman Architecture, 2 set of clock cycles required. 1 cycle tore Datafetch, and 1 cycle fore instruction fetch whereas in Harare Archtexture single set of clock cycle is sufficient.
\rightarrow In von-Neuman Architecture, pipelining is not possible. In Harvard Architects pipelining is possible.
\rightarrow Von-reuman Architecture e is simple in design Whereas Harvard Architecture is complex in design.

5

FAST FOURIER TRANSFORM (EFT)

5.1 Introduction

The Fast Fourier Transform (FFT) does not represent a transform different from the DFT but they are special algorithms for speedier implementation of DFT. FFT requires a comparatively smaller number of arithmetic operations such as multiplications and additions than DFT. FFT also requires lesser computational time than DFT. The fundamental principle on which all these algorithms are based upon is that of decomposing the computation of the DFT of a sequence of length into successively smaller DFTs. The way in which this principle is implemented leads to a variety of different algorithms, all with comparable improvements in computational speed. Thus, we can say that DFT plays an important role in several applications of digital signal processing such as linear filtering, correlation analysis and spectrum analysis.

Direct computation of the DFT is less efficient because it does not exploit the properties of symmetry and periodicity of the phase factor

These properties are :

Symmetry property : $W_{N}^{K+N / 2}=-W_{N}^{K}$

Periodicity property: $W_{N}^{K+N}=W_{N}^{K}$

As we already know that all computationally efficient algorithms for DFT are collectively known as FFT Algorithms and these algorithms exploit the above two properties of phase factor, W_{N}.

5.3 Classification of FFT Algorithms

A) According to the storage of the components of the intermediate vector, FFT algorithms are classified into two groups.

1. In-Place FFT algorithms
2. Natural Input-Output FFT algorithms.
1) In-Place FFT Algorithms. In this FFT algorithm, component of an intermediate vector can be stored at the same place as the corresponding component of the previous vector.

In-place FFT algorithms reduce the memory space requirement.
2) Natural Input-Output FFT Algorithms. In this FFT algorithm, both input and output are in natural order. It means both discrete-time sequence $s(n)$ and its DFT, $S(K)$ are in natural order. This type of algorithm consumes more memory spare for preservation of natural order of $s(n)$ and $S(K)$.

The disadvantage of an In-place FFT algorithm is that the output appears in an unnatural order necessitating proper shuffling of $s(n)$ or $\mathrm{S}(\mathrm{K})$.

In-place FFT algorithms are superior to the Natural Input-output FFT algorithms although it needs shuffling of $s(n)$ or $S(K)$. This shuffling operation is known as Scrambling.

The scrainbled value of an integer is defined as a new number generated by reversing the order of alTbits in the equivalent binary number for that integer.
B) Another classification of FFT algorithms based on Decimation of $s(n)$ or $S(K)$. Decimation means decomposition into decimal parts.

On the basis of decimation process, FFT algorithms are of two types:

1. Decimation-in-Time FFT algorithms.
2. Decimation-in-Frequency FFT algorithms.
1) Decimation-in-Time (BIT) FFT Algorithms. In DIT FFT algorithms, the sequence $s(n)$ will be broken up into odd numbered and even numbered subsequences.
2) Decimation-in-Frequency (DIF) FFT Algorithms. In DIF FFT algorithms, the sequence $s(n)$ will be broken up into two equal halves.
Computation reduction factor of FFT algorithms
$=\frac{\text { Tumber of computations required for direct DFT }}{\text { Number of computations required for FFT algorithm }}$

$$
=\frac{\mathrm{N}^{2}}{\frac{\mathrm{~N}}{2} \log _{2}(\mathrm{~N})}
$$

Number of Stages in DFT Computation using FFT Algorithms
Number of stages in DFT computation using FFT algorithms depends upon the total number of points (N) in a given sequence.
For these algorithms, number of points in a discrete-time sequence,

$$
\mathrm{N}=2^{\mathrm{r}} \text { where } \mathrm{r}>0
$$

r is the number of stages required for DFT computation via FFT algorithms.
Let us have a 8 -point discrete-time sequence, $N=8=2^{3}$. It requires three stages for DFT computations.

In Decimation-in-time (DIT) FFT algorithm, input discrete-time sequence $s(n)$ is in Bit-reversed order but output, $\mathrm{S}(\mathrm{K})$ is in Natural order for in-place computation. In Decimation-in-frequency (DIF) FFT algorithm, input discrete-time sequence $s(n)$ is in Natural order but its DFT is in Bit-reversed order for in-place computation. For in-place computation smaller memory space is required.

Generally, we use Radix-2 FFT algorithms. In Radix-2 FFT algorithms, original discrete-time sequence, $\mathrm{s}(\mathrm{n})$ is divided in two parts and DFT computation is done on each part separately and resultant of each parts added to get the overall discrete-frequency sequence.

In DIT FFT algorithm, original sequence $s(n)$ is divided in even-numbered points and odd-numbered points. But in DIF FFT algorithm, original discrete-time sequence $s(n)$ is divided in two parts as first half and second half.' Fig. 5.1 illustrates the number of stages required in Appoint DFT computation via. DIT FFT algorithm (Here $\mathrm{N}=8$).

Fig. 5.1 Three stages in N-point DFT computation via decimation-in-time FFT algorithm ($N=8$)

Decimation-in-time algorithm

This algorithm is also known as Radix-2 DIT FFT algorithm which means the number of output points N can be expressed as a power of 2 , that is, $N=2$, where M is an integer.

Let $x(n)$ is an N-po two sequences of length $N / 2$, where one sequence c_{0} $x(n)$ and the other of odd-indexed values of $x(n)$. the even-indexed values of $x(n)$ and the ons

$$
\begin{array}{ll}
\text { i.c., } x_{c}(n)=x(2 n) & n=0,1 . . \frac{N}{2}-1 \\
x_{0}(n)=x(2 n+1) & n=0,1 \ldots \frac{N}{2}-1 \tag{5.1}
\end{array}
$$

The N-point DFT of $x(n)$ can be written as

$$
\begin{equation*}
X(k)=\sum_{n=0}^{N-1} x(n) W_{N}^{n k} \quad k=0,1, \ldots N-1 \tag{5.2}
\end{equation*}
$$

Separating $x(n)$ into even and odd indexed values of $x(n)$, we obtain

$$
\begin{align*}
X(k) & =\sum_{n=0}^{N-1} x(n) W_{N}^{n k}+\sum_{n=0}^{N-1} x(n) W_{N}^{n k} \\
& =\sum_{n=0}^{\frac{N}{2}-1} x(2 n) W_{N}^{2 n k}+\sum_{n=0}^{\frac{N}{2}-1} x(2 n+1) W_{N}^{(2 n+1) k} \\
& =\sum_{n=0}^{\frac{N}{2}-1} x(2 n) W_{N}^{2 n k}+W_{N} \sum_{n=0}^{\frac{N}{2}-1} x(2 n+1) W_{N}^{2 n k} \tag{5.3}
\end{align*}
$$

Substituting Eq. (5.1) in Eq. (5.3) we have

$$
\begin{equation*}
X(k)=\sum_{n=0}^{\frac{N}{2}-1} x_{e}(n) W_{N}^{2 n k}+W_{N}^{k} \sum_{n=0}^{\frac{N}{2}-1} x_{0}(n) W_{N}^{2 n k} \tag{5.4}
\end{equation*}
$$

we can write

$$
\begin{align*}
& W_{N}^{2}=\left(e^{-j 2 \pi / N}\right)^{2}=e^{-j 2 \pi / N / 2}=W_{N / 2} \\
& \text { i.e., } \quad W_{N}^{2}=W_{N / 2} \tag{5.5}
\end{align*}
$$

Substituting Eq. (5.5) in Eq. (5.4) we get

$$
X(k)=\underbrace{\sum_{n=0}^{\frac{N}{2}-1} x_{e}(n) W_{N / 2}^{n k}}_{\begin{array}{c}
\text { N/2-point DFT of even } \tag{5.6}\\
\text { indexed sequence }
\end{array}}+\underbrace{W_{N}^{k} \sum_{n=0}^{\frac{N}{2}-1} x_{0}(n) W_{N / 2}^{n k}}_{\begin{array}{c}
N / 2-\text {-point DFT of odd. } \\
\text { indexed sequence }
\end{array}}
$$

$$
\begin{equation*}
=X_{e}(k)+W_{N}^{k} X_{o}(k) \tag{5.7}
\end{equation*}
$$

Each of the sums in Eq. (5.6) is an $\frac{\mathrm{N}}{2}$ point DFT, the first sum being the $\frac{\mathrm{N}}{2}$-Point DFT of the even -indexed sequence and the second being the $\frac{\mathrm{N}}{2}$-point DFT of the oddindexed sequence. Although the index k ranges from $k=0,1 \ldots . N-1$, each of the sums are computed only for $k=0,1 \ldots \frac{N}{2}-1$, since $X_{e}(k)$ and $X_{0}(k)$ are periodic in k with period $\frac{N}{2}$. After the two DFTs are computed, they are combined according to Eq. (5.7) to get the N-point DFT of $X(k)$. So the Eq. (5.7) holds good for the values of $k=0,1 \ldots \frac{N}{2}-1$.

For $k \geq N / 2$

$$
\begin{equation*}
W_{N}^{k+N / 2}=-W_{N}^{k} \tag{5.8}
\end{equation*}
$$

Now $X(k)$ for $k \geq N / 2$ is given by

$$
\begin{equation*}
X(k)=X_{e}\left(k-\frac{N}{2}\right)-W_{N}^{k-N / 2} X_{o}\left(k-\frac{N}{2}\right) \text { for } k=\frac{N}{2}, \frac{N}{2}+1, \ldots . N-1 \tag{5.9}
\end{equation*}
$$

Let us take $\mathrm{N}=8$. Then $\mathrm{X}_{\mathrm{e}}(\mathrm{k})$ and $\mathrm{X}_{0}(\mathrm{k})$ are 4-point $(\because \mathrm{N} / 2)$ DFTs of even-indexed sequence $X_{e}(n)$ and odd-indexed sequence $x_{0}(n)$ respectively,
where

$$
\begin{array}{ll}
x_{e}(0)=x(0) & x_{0}(0)=x(1) \\
x_{e}(1)=x(2) & x_{0}(1)=x(3) \\
x_{e}(2)=x(4) & x_{0}(2)=x(5) \\
x_{e}(3)=x(6) & x_{0}(3)=x(7)
\end{array}
$$

From Eq.(5.7) and Eq. (5.9) we have

$$
\begin{align*}
& X(k)=X_{e}(k)+W_{8}^{k} X_{o}(k) \text { for } 0 \leq k \leq 3 \tag{5.10}\\
& =X_{e}(k-4)-W_{8}^{k-4} X_{0}(k-4) \text { for } 4 \leq k \leq 7
\end{align*}
$$

By substituting different values of k we get

$$
\begin{array}{ll}
X(0)=X_{e}(0)+W_{8}^{0} X_{0}(0) ; & X(4)=X_{e}(0)-W_{8}^{0} X_{0}(0) \\
X(1)=X_{e}(1)+W_{8}^{l} X_{0}(1) ; & X(5)=X_{e}(1)-W_{8}^{l} X_{o}(1) \\
X(2)=X_{e}(2)+W_{8}^{2} X_{o}(2) ; & X(6)=X_{e}(2)-W_{8}^{2} X_{0}(2) \\
X(3)=X_{e}(3)+W_{8}^{3} X_{o}(3) ; & X(7)=X_{e}(3)-W_{8}^{3} X_{o}(3) \tag{5.11}
\end{array}
$$

From the above set of equations we can find that $\mathrm{X}(0) \& X(4), X(1) \& X_{(5)}, X_{(2)}$ $X(6), X(3) \& X(7)$ have same inputs. $X(0)$ is obtained by multiplying $X_{0}(0)$ with W_{8}^{0} and adding the product to $X_{c}(0)$. Similarly $X(4)$ is obtained by multiplying $X_{0}(0)$ with W_{8}^{0} and subtracting the product from $X_{c}(0)$.

This operation can be represented by a butterfly diagram as shown in Fig. 5.2

Fig. 5.2 Flow graph of butterfly diagram for Eq. 5.11

Now the values $\mathrm{X}(\mathrm{k})$ for $\mathrm{k}=1,2,3,5,6,7$ can be obtained and an 8 -point DFT flowgraph can be constructed from two 4-point DFTs as shown in Fig. 5.3

Fig. 5.3 Construction of an 8-point DFT from two 4 point DFTs

From the Fig. 5.3 we can find that initially the sequence $x(n)$ is shuffled into even-indexed sequence $X_{e}(n)$ and odd-indexed sequence $x_{0}(n)$ and then transformed to give $X_{e}(k)$ and $X_{0}(k)$. For $k=0,1,2,3$ the values $X_{0}(k)$ and $X_{0}(k)$ are combined according to Eqs. (5.11) and using butterfly structure shown in Fig. 5.2 the 8-point DFT is obtained. The inputs to the butterfly is separated by $\frac{\mathrm{N}}{2}$ samples i.e., 4 samples and the powers of the twiddle factors associated in this set of butterflies are in natural order.

Now we apply the same approach to decompose each of $\frac{\mathrm{N}}{2}$ sample DFT. This can be done by dividing the sequence $x_{e}(n)$ and $x_{0}(n)$ into two sequences consisting of even and odd members of the sequences. The $\frac{\mathrm{N}}{2}$ point DFTs can be expressed as a combination of $\frac{\mathrm{N}}{4}$-point DFTs.
i.e. $X_{e}(k)$ for $0 \leq k \leq \frac{N}{2}-1$ can be written as
$X_{e}(k)=X_{e e}(k)+W_{N}^{2 k} X_{e o}(k)$ for $0 \leq k \leq \frac{N}{4}-1$

$$
\begin{equation*}
=X_{e e}\left(k-\frac{N}{4}\right)-W_{N}^{2(k \sim N / 4)} X_{e o}\left(k-\frac{N}{4}\right) \text { for } \frac{N}{4} \leq k \leq \frac{N}{2}-1 \tag{5.12}
\end{equation*}
$$

where $X_{e c}(k)$ is the $\frac{N}{4}$-point DFT of the even members of $X_{e}(n)$ and $X_{e o}(k)$ is the $\frac{N}{4}$-point of DFT of the odd members of $x_{e}(n)$.
In the same way
$X_{0}(k)=X_{o e}(k)+W_{N}^{2 k} X_{o o}(k)$ for $0 \leq k \leq \frac{N}{4}-1$
$=X_{o c}\left(k-\frac{N}{4}\right)-W_{N}^{2(k-N / 4)} X_{o o}\left(k-\frac{N}{4}\right)$ for $\frac{N}{4} \leq k \leq \frac{N}{2}-1$
Where $X_{o c}(k)$ is the $\frac{N}{4}$-point DFT of the even members of $X_{0}(n)$ and $X_{00}(k)$ is the $\frac{N}{4}$-point DFT of the odd members of $x_{0}(n)$.
For $N=8$
the sequence $x_{t}(n)$ can be divided into even and odd indexed sequences as

$$
\begin{aligned}
& x_{o}(0)=x_{c}(0) ; x_{N}(1)=x_{c}(2) \\
& x_{c}(0)=x_{c}(1) x_{N}(1)=x_{c}(3)
\end{aligned}
$$

Now from Eq. (5.12) we have

$$
\begin{align*}
& X_{t}(0)=X_{c e}(0)+W_{s}^{0} X_{c c}(0) \\
& X_{c}(1)=X_{c c}(1)+W_{s}^{2} X_{c c}(1) \\
& X_{t}(2)=X_{c c}(0)+W_{8}^{0} X_{c c}(0) \\
& X_{c}(3)=X_{c c}(1)+W_{s}^{2} X_{c c}(1) \tag{5.14}
\end{align*}
$$

where $X_{e c}(k)$ is the 2 point DFT of even members of $X_{c}(n)$ and $X_{e 0}(k)$ is the 2 -point DFT ${ }_{\text {of }}$ odd members of $x_{c}(n)$.
Similarly
the sequence $x_{0}(n)$ can be divided into even and odd membered sequences as

$$
\begin{aligned}
& x_{o c}(0)=x_{0}(0) x_{o c}(1)=x_{0}(2) \\
& x_{\infty}(0)=x_{0}(1) x_{\infty}(1)=x_{0}(3)
\end{aligned}
$$

From the Eq. (5.13) we can obtain

$$
\begin{align*}
& X_{0}(0)=X_{o c}(0)+W_{8}^{0} X_{o 0}(0) \\
& X_{0}(1)=X_{c c}(1)+W_{8}^{2} X_{\infty 0}(1) \\
& X_{0}(2)=X_{\infty}(0)+W_{8}^{0} X_{\infty 0}(0) \\
& X_{0}(3)=X_{c c}(1)+W_{8}^{2} X_{\infty 0}(1) \tag{5.15}
\end{align*}
$$

where
$X_{o c}(k)$ is the 2-point DFT of the even members of $X_{0}(n)$,
$X_{\infty 0}(\mathrm{k})$ is the 2-point DFT of the odd members of $\mathrm{x}_{0}(\mathrm{n})$.
Fig. 5.4 shows the resulting flow graph when the four-point DFTs of Fig. 5.3 are evaluated as in Eq. (5.14) and Eq. (5.15)

From the Fig. 5.4 we find that the input sequence is again reordered, the input samples to each butterfly are separated by $\frac{\mathrm{N}}{4}$ samples i.e., 2 samples and there are two sets of butterflies. In each set of butterflies the twiddle factor exponents are same and separated by two.

For the more general case, we could proceed by decomposing the $\frac{N}{4}$-point transforms
in Eq. (5.12) and Eq. (5.13) into $\frac{\mathrm{N}}{8}$-point transforms and continue until you left with only 2-point transforms. Each decomposition is called a stage, and the total number of stages is given by $M=\log _{2} \mathrm{~N}$. The 8 -point DFT requires 3 stages. So far we have seen the decomposition for stage 3 and stage 2 . For stage 1 the two point DFT can be easily found by adding and subtracting the input sequences as the twiddle factor associated with first stage is $W_{s}^{0}=1$, i.e.,

Fig. 5.4 Construction of 8 point DFT from two 4 point DFTs and 4 point DFT from two point DFTs.
the first stage involves no multiplication but addition and subtracting. Now we have

$$
\begin{align*}
& X_{\mathrm{ee}}(0)=\mathrm{x}_{\mathrm{ee}}(0)+\mathrm{X}_{\mathrm{ee}}(1)=\mathrm{x}_{\mathrm{e}}(0)+\mathrm{x}_{\mathrm{e}}(2)=\mathrm{x}(0)+\mathrm{x}(4) \quad \square \\
& \mathrm{X}_{\mathrm{ee}}(1)=\mathrm{x}_{\mathrm{ee}}(0)-\mathrm{x}_{\mathrm{ee}}(1)=\mathrm{x}_{\mathrm{e}}(0)+\mathrm{x}_{\mathrm{e}}(2)=\mathrm{x}(0)-\mathrm{x}(4) \tag{5.16}
\end{align*}
$$

Fig. 5.5. Flow graph of Decimation-in-time algorithm.
The algorithm has been called decimation in time since at each stage, the input sequence is divided into smaller sequences i.e. the input sequences are decimated at each stage. From the flow graph several important observations can be made.

1. Bit Reversal

In DIT algorithm we can find that in order for the output sequence to be in natural order (i.e., $X(k), k=0,1 \ldots N-1$) the input sequence had to be stored in a shuffled order: For an 8-point DIT algorithm the input sequence is $x(0), x(4), x(2), x(6), x(1), x(5), x(3)$ and $x(7)$. We can see that when N is a power of 2 , the input sequence must be stored in bitreversal order for the output to be computed in natural order.

For $\mathrm{N}=8$ the bit-reversal process is shown in table 5.1.
Table 5.1 Bit-reversal process for $\mathbf{N}=8$

Input sample index	Binary representation	Bit reversed binary	Bit reversed sample index
0	000	000	0
1	001	100	4
2	010	010	2
3	011	110	6
4	100	001	1
5	101	101	5
6	110	011	3
7	111	111	7

Steps of radix - 2 DITT-FET algorithm

1. The number of input samples $\mathrm{N}=2^{\mathrm{M}}$, where, M is an integer.
2. The input sequence is shuffled through bit-reversal.
3. The number of stages in the flowgraph is given by $\mathrm{M}=\log _{2} \mathrm{~N}$
4. Each stage consists of $\frac{\mathrm{N}}{2}$ butterflies.
5. Inputs/outputs for each butterfly are separated by 2^{m-1} samples, where m represents the stage index, i.e., for first stage $m=1$ and for second stage $m=2$ so on.
6. The number of complex multiplications is given by $\frac{\mathrm{N}}{2} \log _{2} \mathrm{~N}$.
7. The number of complex additions is given by $\mathrm{N} \log _{2} \mathrm{~N}$.

8 . The twiddle factor exponents are a function of the stage index m and is given by

$$
\begin{equation*}
k=\frac{N t}{2^{n}} \quad t=0,1,2, \ldots . .2^{m-1}-1 \tag{5.17}
\end{equation*}
$$

9. The number of sets or sections of butterflies in each stage is given by the formula $2^{\mathrm{M-m}}$.
10. The exponent repeat factor (ERF), which is the number of times the exponent sequence associated with m is repeated is given by $2^{\mathrm{M}-\mathrm{m}}$.

Table 5.2 Phase Rotation Factors for Quick Computation

Number of points in DFT, N	Stage 1	Stage 2	Stage 3	Stage 4	Stage 5
4 No. of stages $=2$	Twiddle factor not required	$\mathrm{W}_{4}^{0}, \mathrm{~W}_{4}^{1}$	-	-	-
8 No. of stages $=3$	Twiddle factor not required	$\mathrm{W}_{8}^{0}, \mathrm{~W}_{8}^{2}$	$\begin{aligned} & W_{8}^{0}, W_{8}^{1} \\ & W_{s}^{2}, W_{8}^{3} \end{aligned}$		
$\begin{gathered} 16 \\ \text { No. of stages }=4 \end{gathered}$	Twiddle factor not required	$\mathrm{W}_{16}^{0}, \mathrm{~W}_{16}^{4}$	$\begin{aligned} & \mathrm{W}_{16}^{0}, \mathrm{~W}_{16}^{2} \\ & \mathrm{~W}_{16}^{4}, \mathrm{~W}_{16}^{6} \end{aligned}$	$\begin{aligned} & W_{16}^{0}, W_{16}^{1} \\ & W_{16}^{2}, W_{16}^{3} \\ & W_{16}^{6}, W_{16}^{7} \end{aligned}$	
$\begin{gathered} 32 \\ N_{0} . \text { of stages }=5 \end{gathered}$	Twiddle factor not required	$\mathrm{W}_{32}^{0}, \mathrm{~W}_{32}^{8}$	$\begin{aligned} & W_{32}^{0}, W_{32}^{4} \\ & W_{32}^{8}, W_{32}^{12} \end{aligned}$	$\begin{gathered} \mathrm{W}_{32}^{0}, \mathrm{~W}_{32}^{2} \\ \mathrm{~W}_{32}^{14} \end{gathered}$	$\begin{gathered} W_{32}^{0} \\ W_{32}^{1}, . . \\ W_{32}^{15} \\ \hline \end{gathered}$

Example 5.1

Draw the Flow graph of 16 -point DIT-FFT.

Solution

1. The number of input Samples, $N=16$
2. The input sequence is shuffled through bit-reversal shown in table 5.3 and $\mathrm{applim}_{\mathrm{ed}_{\mathrm{as}}}$ input to the flow graph.

Table 5.3 Bit-reversal process

Index	Binary Representation	Bit-reversal Order	Bit-reversal Index
0	0000	0000	0
1	0001	1000	8
2	0010	0100	4
3	0011	1100	12
4	0100	0010	2
5	0101	1010	10
6	0110	0110	6
7	0111	10010	14
10	1001	0101	101
11	1010	1101	9
12	1100	0011	13
13	1101	1110	1111

3. The number of stages $M=\operatorname{Iog}_{2} 16=4$.
4. The number of butterflies per stage is $\frac{\mathrm{N}}{2}=8$.
5. The inputs/outputs for each butterfly in stage m is separated by 2^{m-1} samples. Stage 1 Inputs/outputs for each butterfly are separated by 1 sample.
Stage 2 Inputs/outputs for each butterfly are separated by 2 samples.
Stage 3 Inputs/outputs for each butterfly are separated by 4 samples.
Stage 4 Inputs/outputs for each butterfly are separated by 8 samples.
6.

The number of complex multiplications is given by

$$
\frac{N}{2} \log _{2} N=8 \log _{2} 16=32
$$

7. The number of complex additions is given by $16 \log _{2} 16=64$
8. The number of sets or sections of butterflies in each stage is given by $2^{\mathrm{M-m}}$

For Stage 1 the number of sets of butterflies are $2^{4-1}=8$
For Stage 2 the number of sets of butterflies are $2^{4-2}=4$
For Stage 3 the number of sets of butterflies are $2^{4-3}=2$
For Stage 4 there is only one set of butterflies.
9. The twiddle factor exponents for each stage are given by

$$
\mathrm{k}=\frac{\mathrm{Nt}}{2^{\mathrm{m}}} \mathrm{t}=0,1,2, \ldots 2^{\mathrm{m}-1}-1 .
$$

For Stage 1 the exponent is $0 \rightarrow K=\frac{16 \cdot 0}{q}=0$,
For Stage 2 the exponents are $0,4 \rightarrow, K=\frac{16 \cdot 0}{x^{2}}=0, K=\frac{16 \cdot 1}{4}=4$ For Stage 3 the exponents are $0,2,4,6$
For Stage 4 the exponents are $0,1,2,3,4,5,6,7$
10. The exponent repeat factor (ERF), which is the number of times the exponent sequence associated with m is repeat is given by $2^{\mathrm{M}-\mathrm{m}}$.
For stage $1 \mathrm{ERF}=8$
For stage $2 \mathrm{ERF}=4$
For stage $3 \mathrm{ERF}=2$
For stage $4 \mathrm{ERF}=1$.
From the steps $8,9,10$ we can draw the following conclusion.
For stage 1 the twiddle factor exponent is zero and is repeated 8 times. $(\because E R F=8)$. Therefore, all the 8 sets of butterflies have twiddle facts

For stage 2, the twiddle factor exponents sequence is 0,4 and this sequence is repeated 4 times $(\because E R F=4)$, i.e., all the 4 sets of butterflies where each set consists of two butterflies have twiddle factors as $\mathrm{W}_{16}^{0}, \mathrm{~W}_{16}^{4}$.

For stage 3 the twiddle factor exponents sequence is $0,2,4,6$ and this sequence is repeated 2 times (\because E.R.F $=2$), i.e., all the two sets of butterflies where each set consists of 4 butterflies have twiddle factors as $W_{16}^{0}, W_{16}^{2}, W_{16}^{4}, W_{16}^{6}$.

For stage 4 the twiddle factor exponents sequence is $0,1,2,3,4,5,6,7$ and ERF is equal to one. In this stage the only set of butterflies which consists of 8 butterflies have twiddle factor as $W_{16}^{0}, W_{16}^{1}, W_{16}^{2}, W_{16}^{3}, W_{16}^{4}, W_{16}^{5}, W_{16}^{6}, W_{16}^{7}$
Using the above steps the complete flowgraph of 16 point DFT using D1T algorithm is drawn as shown in Fig. 5.6.
Stage 3
Stage 2
Stage I
$\xrightarrow{160_{16}^{6}}$
${ }_{s_{2}(8)}$

Fog 5.6 : Flow Graph of 16-point DIT-FFT algorithm

Compute the eight-point DFT of the sequences $x(n)=\{0.5,0.5,0.5,0,0,0\}$ using the
$r_{\text {adix-2 }}$ DIT agorithm. 412)

The twiddle factors are
$W^{N}=1 ; W^{1}=0.707-\mathrm{j} 0.707 ; W^{2}=-j ; W^{3}=-0.707-\mathrm{j} 0.707$

$X(k)=\{2,0.5-\mathrm{j} 1.207,0,0.5-\mathrm{j} 0.207,0,05 .+\mathrm{j} 0.207,0,0.5+\mathrm{j} 1.207\}$

5.6 Decimation-in-frequency algorithm

DIT algorithm is based on the decomposition of the DFT computation by forming smaller and smaller subsequences of the sequence $\mathrm{x}(\mathrm{n})$. In DIP algorithm the output sequence $X(k)$ is divided into smaller and smaller subsequences. In this algorithm the input sequence $x(n)$ is partitioned into two sequences each of length $\frac{N}{2}$ samples. The first sequence $x_{1}(n)$ consists of first $\frac{N}{2}$ samples of $x(n)$ and the second sequence $x_{2}(n)$ consists of the last N $\overline{2}$ samples of $x(n)$ i.e.,

$$
\begin{align*}
& x_{1}(\mathrm{n})=\mathrm{x}(\mathrm{n}), \mathrm{n}=0,1,2, \ldots \mathrm{~N} / 2-1 \tag{5.18}\\
& \mathrm{x}_{2}(\mathrm{n})=\mathrm{x}(\mathrm{n}+\mathrm{N} / 2) \mathrm{n}=0,1,2, \ldots \mathrm{~N} / 2-1 \tag{5.19}
\end{align*}
$$

i.e., If $N=8$ the first sequence $x_{1}(n)$ has values for $0 \leq n \leq 3$ and $x_{2}(n)$ has values for $4 \leq n \leq 7$.

The N -point DFT of $\mathrm{x}(\mathrm{n})$ can be written as

$$
\begin{aligned}
X(k) & =\sum_{n=0}^{\frac{N}{2}-1} x(n) W_{N}^{n k}+\sum_{n=\frac{N}{2}}^{N-1} x(n) W_{N}^{n k} \\
& =\sum_{n=0}^{\frac{N}{2}-1} x_{1}(n) W_{N}^{n k}+\sum_{n=0}^{\frac{N}{2}-1} x_{2}(n) W_{N}^{(n+N / 2) k} \\
& =\sum_{n=0}^{\frac{N}{2}-1} x_{1}(n) W_{N}^{n k}+W_{N}^{N k / 2} \sum_{n=0}^{\frac{N}{2}=1} x_{2}(n) W_{N}^{n k}
\end{aligned}
$$

when k is even $e^{-j \pi k}=1$

$$
\begin{align*}
X(2 k)= & \sum_{n=0}^{\frac{N}{2}-1}\left[x_{1}(n)+x_{2}(n)\right] W_{N}^{2 n k} \\
& =\sum_{n=0}^{\frac{N}{2}-1}\left[x_{1}(n)+x_{2}(n)\right] W_{N / 2}^{n k} .
\end{align*}
$$

$$
\left(\because \mathrm{W}_{\mathrm{N}}^{2}=\mathrm{W}_{\mathrm{N} / 2}\right)
$$

Eq. (5.20) is the $\frac{\mathrm{N}}{2}$-point DFT of the $\frac{\mathrm{N}}{2}$-point sequence obtained by adding first halfax the last half of the input sequence.
when k is odd $\mathrm{e}^{-\mathrm{j} \pi \mathrm{k}}=-1$

$$
\begin{align*}
X(2 k+1) & =\sum_{n=0}^{\frac{N}{2}-1}\left[x_{1}(n)+x_{2}(n)\right] W_{N}^{(2 k+1) n} \\
& =\sum_{n=0}^{\frac{N}{2}-1}\left[x_{1}(n)+x_{2}(n)\right] W_{N}^{2 k n} W_{N / 2}^{n k} \tag{5.21}
\end{align*}
$$

Eq. (5.21) is the $\frac{\mathrm{N}}{2}$-point of DFT of the sequence obtained by subtracting the second half of the input sequence from the first half and multiplying the resulting sequence by W_{n}^{R}

Eq. (5.20) and Eq. (5.21) show that the even and odd samples of the DFT N can be obtained from the $\frac{N}{2}$-point DFTs of $/(n)$ and $g(n)$ respectively
where $f(n)=x_{1}(n)+x_{2}(n) \quad n=0,1 \ldots \frac{N}{2}-1$

$$
\begin{equation*}
g(n)=\left[x_{1}(n)-x_{2}(n)\right] W_{N}^{n} \quad n=0,1, \ldots \frac{N}{2}-1 \tag{5.22}
\end{equation*}
$$

The Eq. (5.22) can be represented by a butterfly as shown in Fig. 5.7. This is the basic operation of DIF algorithm.

Fig 5.7 Flow graph of basic butterfly diagram for DIF algorithm
From Eq. (5.20), for $\mathrm{N}=8$, we have

$$
\begin{equation*}
X(0)=\sum_{n=0}^{3}\left[x_{1}(n)+x_{2}(n)\right]=\sum_{n=0}^{3} f(n)=f(0)+f(1)+f(2)+f(3) \tag{5.23}
\end{equation*}
$$

$$
\begin{array}{rlr}
X(2) & =\sum_{n=0}^{3}\left[x_{1}(n)+x_{2}(n)\right] W_{8}^{2 n}=\sum_{n=0}^{3} f(n) W_{8}^{2 n} & \\
& =f(0)+f(1) W_{8}^{2}-f(2)-f(3) W_{8}^{2} & \begin{array}{ll}
W_{8}^{4}=\left(e^{-j 2 \pi / 8}\right)^{4}=e^{j \pi}=-1 \\
W_{8}^{8}=\left(e^{-j 2 \pi / 8}\right)^{8}=e^{j 2 \pi}=1
\end{array}
\end{array}
$$

$$
\begin{aligned}
X(4) & =\sum_{n=0}^{3}\left[x_{1}(n)+x_{2}(n)\right] W_{8}^{4 n}=\sum_{n=0}^{3} f(n) W_{8}^{4 n}=\sum_{n=0}^{3} f(n)(-1)^{n} \\
& =f(0)-f(1)+f(2)-f(3)
\end{aligned}
$$

$$
X(6)=\sum_{n=0}^{3}\left[x_{1}(n)+x_{2}(n)\right] W_{8}^{6 n}=\sum_{n=0}^{3} f(n)\left(-W_{8}^{2}\right)^{n}
$$

$$
=f(0)-f(1) W_{s}^{2}-f(2)+f(3) W_{s}^{2}
$$

From Eq. (5.21) we have

$$
\begin{align*}
& \begin{aligned}
X(1)= & \sum_{n=0}^{3}\left[x_{1}(n)+x_{2}(n)\right] W_{s}^{n}=\sum_{n=0}^{3} g(n)=g(0)+g(1)+g(2)+g(3) \\
X(3)= & \sum_{n=0}^{3}\left[x_{1}(n)+x_{2}(n)\right] W_{s}^{3 n}=\sum_{n=0}^{3} g(n) W_{8}^{2 n} \\
& =g(0)+g(1) W_{8}^{2}-g(2)-g(3) W_{8}^{2} \\
X(5)= & \sum_{n=0}^{3}\left[x_{1}(n)+x_{2}(n)\right] W_{s}^{5 n}=\sum_{n=0}^{3} g(n) W_{8}^{4 n}=\sum_{n=0}^{3} g(n)(-1)^{n} \\
= & g(0)-g(1)+g(2)-g(3)
\end{aligned} \tag{5.26}\\
& X(7)=
\end{align*}
$$

We have seen that the even-valued samples of $\mathrm{X}(\mathrm{k})$ can be obtained from the 4 -point DFT of the sequence $f(n)$ where.

$$
\text { i.e., } \quad \begin{align*}
f(n) & =x_{1}(n)+x_{2}(n) \quad n=0,1 \ldots \frac{N}{2}-1 \\
f(0) & =x_{1}(0)+x_{2}(0) \\
f(1) & =x_{1}(1)+x_{2}(1) \\
f(2) & =x_{1}(2)+x_{2}(2) \\
f(3) & =x_{1}(3)+x_{2}(3) \tag{5.30}
\end{align*}
$$

The odd-valued samples of $X(k)$ can be obtained from the 4 -point DFT of the sequencer $g(n)$ where $g(n)=\left[x_{1}(n)-x_{2}(n)\right] W_{8}^{n}$

$$
\text { i.e., } \begin{align*}
& g(0)=\left[x_{2}(0)-x_{2}(0)\right] W_{8}^{0} \\
g(1) & =\left[x_{1}(1)-x_{2}(1)\right] W_{8}^{1} \\
g(2) & =\left[x_{1}(2)-x_{2}(2)\right] W_{8}^{2} \\
g(3) & =\left[x_{1}(3)-x_{2}(3)\right] W_{8}^{3} \tag{5.31}
\end{align*}
$$

Using the above information and the butterfly structure shown in Fig. 5.7 we can draw the flow graph of 8-point DFT shown in Fig. 5.8.

Fig. 5.8 Reduction of an 8 point DFT to two 4 point DFTs by decimation in frequency Now each $\frac{\mathrm{N}}{2}$-point DFT can be computed by combining the first half and the last half of the input points for each of the $\frac{\mathrm{N}}{2}$-point DFTs and then computing $\frac{\mathrm{N}}{4}$-point DFTs. For the 8-point DFT example the resultant flow graph is shown in Fig.5.9

Fig. 5.9 Flow graph of decimation in frequency decomposition of an 8-point DFT into four 2-point DFT computations

The 2-point DFT can be found by adding \& subtracting the input points. The Fig.s. can be further reduced as in Fig. 5.10.

Fig. 5.10 Flow graph of 8-point DIF-FFT algorithm

Fig. 5.11 Flow graph of Complete decimation in frequency decomposition of an 8 point DFT computation

The complete flow graph of 8-point DFT using DIF algorithm is shown in Fig. 5.1l. From the Fig. 5.11 we observe that for DIF algorithm the input sequence is in natural order, while the output sequence is in bit reversal order, whereas the reverse is true for the DIT algorithm. The number of computations required is same as DIT algorithm. The basic computational block in the diagram is the "butterfly" shown in Fig. 5.12.

Fig. 5.12 Basic Computational diagram for DIF-FFT
Like DIT algorithm, DIF algorithm also in-place algorithm where the same locations are use to store both the input and output sequences.
3. Steps for Radix - 2 DIF-FFT algorithm
-1. The number of input samples $\mathrm{N}=2$, where, M is number of stages.
2. The input sequence is in natural order.
3. The number of stages in the flow graph is given by $M=\log _{2} N$.
4. Each stage consists of $\frac{\mathrm{N}}{2}$ butterflies.
5. Inputs/outputs for each butterfly are separated by $2^{\mathrm{M}-\mathrm{m}}$ samples, where m represents the stage index i.e., for first stage $m=1$ and for second stage $m=2$ so on.
6. The number of complex multiplications is given by
7. The number of complex additions is given by $\mathrm{N} \log _{2} \mathrm{~N}$.
8. The twiddle -factor exponents are a function of the stage index m and is given by

$$
\begin{equation*}
\mathrm{k}=\frac{\mathrm{Nt}}{2^{\mathrm{M}-\mathrm{m}+1^{\prime}}} \mathrm{t}=0,1,2, \ldots 2^{\mathrm{M}-\mathrm{m}} \tag{5.32}
\end{equation*}
$$

9. The number of sets or sections of butterflies in each stage is given by the formula 2^{m-1}.
10. The exponent repeat factor (ERF), which is the number of times the exponent sequence associated with m is repeated is given by 2

Differences and similarities between DIT and DIF algorithms

Differences

1. For decimation-in-time (DIT), the input is bit-reversed while the output is in natural order. Whereas, for decimation-in-frequency the input is in natural order while the output is bit reversed order.
2. The DIF butterfly is slightly different from the DIT wherein DIF the multiplication takes place after the add-subtract operation.

Similarities

Both algorithms require $\mathrm{N} \log , \mathrm{N}$ operations to compute the DFT. Both algorith can be done in-place and both need to perform bit reversal at some place during bes computation.

Examyle 5.3

Compute IDFT of the sequence $X(k)=(7,-0.707,-j, 0.707,1,0.707+j 0.707, j,-0.707$

Solution

$X(k)=\{2,0.5-\mathrm{j} 1.207,0,0.5-\mathrm{j} 0.207,0,0.5+\mathrm{j} 0.207,0,0.5+\mathrm{j} 1.207\}$
 Example 5.4

Compute 4-point DFT of a sequence $x(n)=\{0,1,2,3\}$ using DIT, DIF algorithm.

Solution

DIT algorithm

Twiddle factors associated with butterflies are
$W_{4}^{0}=1 ; W_{4}^{1}=e^{-2 j \pi / 4}=-j$
Bit reversal of input is given by

Input index	Binary index	Bit-reversal	Bit-reversal index
0	00	00	0
1	01	10	2
2	10	01	1
3	11	11	3

Input

0.	$0+2=2$	$2+4=6$
2.	$0-2=-2$	$-2+(-\mathrm{j})(-2)=-2+2 \mathrm{j}$
1	$1+3=4$	$2-4=-2$
3	$1-3=-2$	$-2-(-\mathrm{j})(-2)=-2-2 \mathrm{j}$

$$
X(k)=\{6,-2+2 j,-2,-2-2 j\}
$$

DIF

Input	S_{1}	Output

0
$0+2=2$
1午 $3=4$
$0-2=-2$,

$$
(1-3)(-j)=2 j
$$

$$
X(k)=\{6,-2+2 j,-2,-2-2 j\}
$$

$t=2$ mear
t-o. 2 (IngDC)

QUESTIONS AND ANSWDRS

Q. 1 What is FFT?

Ans The fast Fourier transform (FFT) is an algorithm used to compute the DFT. It makes use of the symmetry and periodicity properties of twiddle factor W to effectively reduce the DFT computation time. It is based on the fundamental' principle of decomposing the computation of DFT of a sequence of length N into successively smaller discrete Fourier transforms. The FFT algorithm provides speed-increase factors, when compared with direct computation of the DFT, of; approximately 64 and 205 for 256 -point and 1024 -point transforms, respectively,

Q. 2 Why FFT is needed?

Ans The direct evaluation of DFT using the formula $X(k)=\sum_{n=0}^{N-1} x(n) e^{-j 2 \pi n k / N}$ requires N^{2} complex multiplications and $\mathrm{N}(\mathrm{N}-1)$ complex additions. Thus for reasonably large values of N (in the order of 1000) direct evaluation of the DFT requires an inordinate amount of computation. By using FFT algorithms the number of computations can be reduced. For example, for an N -point DFT , the number of complex multiplications required using FFT is $\frac{\mathrm{N}}{2} \log _{2} \mathrm{~N}$. If $\mathrm{N}=16$, the number of complex multiplications required for direct evaluation of DFT is 256 , whereas using FFT only 32 multiplications are required.
Q. 3 What is the speed improvement factor in calculating 64-point DFT of a sequence using direct computation and FFT algorithms?
or
Calculate the number of multiplications needed in the calculation of DFT and FFT with 64-point sequence.
Ans The number of complex multiplications required using direct computation is

$$
\mathrm{N}^{2}=64^{2}=4096
$$

The number of complex multiplications required using FFT is N

$$
\frac{\mathrm{N}}{2} \log _{2} \mathrm{~N}=\frac{64}{2} \log _{2} 64=192 .
$$

Speed improvement factor $=\frac{4096}{192}=21.33$
Q. 4 What is the main advantage of FFT?

Ans FFT reduces the computation time required to compute discrete Fourier transform.
Q. 5 Calculate the number of multiplications needed in the calculation of DFT using FFT algorithm with 32-point sequence.

For N -point DFT the number of complex multiplications needed using FFT algorithm is $\frac{\mathrm{N}}{2} \log _{2} \mathrm{~N}$.
For $N=32$, the number of complex multiplications is equal to

$$
\frac{32}{2} \log _{2} 32=16 \times 5=80
$$

How many multiplications and additions are required to compute N -point DFT using radix-2 FFT? radix-2 FFT are $\mathrm{N} \log _{2} \mathrm{~N}$ and $\frac{\mathrm{N}}{2} \operatorname{Iog}_{2} \mathrm{~N}$ respectively.

What is meant by radix-2 FFT?
The FFT algorithm is most efficient in calculating N-point DFT. If the number of output points N can be expressed as a power of 2 , that is, $N \simeq 2^{M}$, where M is an integer, then this algorithm is known as radix-2 FFT algorithm,
What are the differences and similarities between DIP and DIT algorithms?
Ans Differences

1. For DIT, the input is bit reversed while the output is in natural order, whereas for DIP the input is in natural order while the output is bit reversed.
2. The DIFbutterfly is slightly different from the DIT butterfly, the difference being that the complex multiplication takes place after the add-subtract operation in DIP.

Similarities

Both algorithms require same number of operations to compute the DFT. Both algorithms can be done in-place and both need to perform bit reversal at. some place during the computation.
Q. 9 What is the basic operation of the DIT algorithm?

Ans The basic operation of the DIT algorithm is the so called butterfly in which two inputs $X_{m}(p)$ and $X_{m}(q)$ are combined to give the outputs $X_{m+1}(p)$ and $X_{m+1}(q)$ via. the operation

$$
\begin{aligned}
& X_{m+1}(p)=X_{m}(p)+W_{N}^{k} X_{m}(q) \\
& X_{m+1}(q)=X_{m}(p)-W_{N}^{k} X_{m}(q)
\end{aligned}
$$

Where W_{N}^{k} is twiddle factor.
4
What is the basic operation of the DIF algorithms?
The basic operation of the DIF algorithm is the so called butterfly in which two inputs

$$
\begin{aligned}
& X_{m}(p) \text { and } X_{m}(q) \text { are combined to give the outputs } X_{m+1}(p) \text { and } X_{m+1}(q) \text { via the operation } \\
& \qquad \begin{array}{|l}
X_{m+1}(p)=X_{m}(p)+X_{m}(q) \\
\\
X_{m+1}(q)=\left[X_{m}(p)-X_{m}(q)\right] W_{N}^{k}
\end{array}
\end{aligned}
$$

where W_{N}^{k} is twiddle factor.
Q. 11 Draw the flow graph of a two-point DFT for a decimation-in-time decomposition.

Ans The flow graph of a two-point DFT for a decimation-in-time algorithm is

where $X_{m}(p)$ and $X_{m}(q)$ are inputs to the butterfly, $X_{m+1}(p)$ and $X_{m+1}(q)$ are outputs of the butterfly. The nodes p and q represents memory locations.
Q. 12 Draw the flow graph of a two-point radix-2 DIF-FFT.

Ans The flow graph of a two-point DFT for a decimation-in-time frequency algorithm is

where $X_{m}(p)$ and $X_{m}(q)$ are inputs, $X_{m+1}(p)$ and $X_{m+1}(q)$ are outputs of the butterfly. The nodes p and q represents memory locations.
Q. 13 Draw the basic butterfly diagram for DIT algorithm.

Ans The basic butterfly diagram for DIT algorithm is

where $X_{m}(p)$ and $X_{m}(q)$ are inputs to the butterfly, $X_{m+1}(p)$ and $X_{n+1}(q)$ are outputs of the butterfly. The nodes p and q represents memory locations.
ais $D^{\text {an }}$ the basic butterfly diagram for DIP algorithm.
The basic butterfly diagram for DIP algorithm is

where $X_{m}(p)$ and $X_{m}(q)$ are inputs, $X_{m+1}(p)$ and $X_{m+1}(q)$ are outputs of the butterfly. The nodes p and q represents memory locations.
Q. 15 What is meant by 'm-place' in DIT and DIF algorithms?

Ans The basic butterfly diagrams used in DIT and DIF algorithms are shown in Fig. 1 and Fig. 2 respectively.

Fig. 1

Fig. 2

In the Fig. 1 two lines emerging from two nodes cross each other and connected to two nodes on the right hand side. These nodes represents memory locations. At the input nodes $X_{m}(p)$ and $X_{m}(q)$, the inputs are stored. After the outputs $X_{m+1}(p)$ and $X_{m+1}(q)$ are calculated, the same memory location is used to store the new values in place of the input values. An algorithm that use the, same location to store both the input and output sequences is called an 'in-place' algorithm.
Q.16 How we can calculate IDFT using FFT algorithm?

Ans The inverse DFT of an N-point sequence $X(k) ; k=0,1 \ldots N-1$ is defined as

$$
\begin{equation*}
x(n)=\frac{1}{N} \sum_{k=0}^{N-1} X(k) W_{N}^{-n k} \tag{l}
\end{equation*}
$$

If we take complex conjugate and multiply by N , we get

$$
\begin{equation*}
N x^{*}(n)=\sum_{k=0}^{N-1} X^{*}(k) W_{N}^{n k} \tag{2}
\end{equation*}
$$

The right hand side of the above equation is DFT of the sequence $X^{\prime \prime}(k)$ and may b_{e} computed using any FFT algorithm. The desired output sequence $x(n)$ can then be obtained by complex conjugating the DFT of Eq. (2) and dividing by N to give.

$$
x(n)=\frac{1}{N}\left[\sum_{k=0}^{N-1} X^{*}(k) W_{N}^{n k}\right]^{\bullet}
$$

Q. 17 Draw the 4-point radix 2 DIF-FFT butterfly structure for DFT.

Ans

Q. 18 Draw the 4-point radix-2 DIT-FFT butterfly structure for DFT.

Ans

Q. 19 Find DFT of the sequence $x(n)=\{1,2,3,0\}$ using DIF algorithm.

Ans

The twiddle factors are $W_{4}^{0}=1 ; W_{4}^{1}=e^{-j 2 \pi / 4}=-j$
$X(k)=\{6,-2,-2 \mathrm{j}, 2,-2+2 \mathrm{j}\}$
20) What are the applications of FFT Algorithms?

The applications of FFT algorithms includes.
(i) Linear filtering, (ii) Correlation, (iii) Spectrum analysis.

DXDRCISE

Write the equations and draw the signal flow graph for the decimation in frequency algorithm for $\mathrm{N}=4$.
Draw the signal flow graph of decimation-in-time algorithm for $\mathrm{N}=8$.
Compute the DFT for $\mathrm{N}=4$ if

$$
x(n)=1 \quad 0 \leq n \leq 3
$$

using the decimation-in-frequency algorithm.
4. Compute the DFT of the sequence for $\mathrm{N}=4$ if

$$
x(n)=\sin \frac{n \pi}{2}
$$

using decimation-in-time algorithm.
5. Find the DFT of the following sequences using decimation-in-time (DIT) and decimation-in-frequency (DIF) FFT algorithms.
$(\lambda) s(n)=\{1,1,1,1,1,1,1,1\}$
(b) $s(n)=\{1,0,0,0,1,1,1,0\}$
(c) $s(n)=\{1,0,0,1,-1,1\}$
(d) $s(n)=\{1,1,1,1,0,0,0,0\}$

