FAST FOURIER TRANSFORM (FFT)

p— .
¢f Introduction
g

The Fast Fourier Transform (FFT) does not represent & transform different from the
DFT but they are special algorithms for speedier implementation of DFT.E FW a
comparatively smaller number of arithmetic operations such wltj&ications and

—

additions than DET. FFT also requires lesser computational time than DFT. The

e

fundamental prin’éﬁfé on which all these algorithms are based upon is that of decomposing
the computation of the DFT of a sequence of length into successively smaller DFTs. The

way in which this principle is implemented leads to a variety of different algorithms, all
with comparable improvements in computational speed. Thus, we can say that DFT plays
an important role in several applications of digital signal processing such as linear filtering.

- - - 3 {v_ -
correlation analysis.and spectrum analysis.
[ —

WTransform Algorithms
v

Direct computation of the DFT is less efficient because it does not exploit the properties
o~ —
—e” j2x IN N~
.

of symmetry and periodicity of the phase factor Wy

2T
- . Wy
ese properties are : M= g N

Symmetry property : Wi’ = ~Wy

Periodici r";:;: K
odicity property : Wy* =Wy
4 .

As we already know that all computationally efficient algorithms for DFT are
collectively known as FFT Algorithms and these algorithms exploit the above two properties
of phase factor, W,

P
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53 Classification of FFT Algorithms /

the intermediate vh
\"/ A) According to the storage of the components of r, FFT algorithms,

are classified into two groups.
I. In-Place FFT algorithms

2. Natural Input-Output FFT algorithms.

1) In-Place FFT Algorithms. In this FFT algonthm', component of ap intermediale
vector can be stored at the same place as the corresponding component of the Previo,,
vector.

In-place FFT algorithms reduce the memory space requirement,
~ oS~

2) Natural Inpu\t-‘Ouftpu't FFT Algorithms. In this FFT algorithm, both input ang o
output are in natural order. It means both discrete-time sequence s(n) and its DFT, S(K) ‘;
are in natural order. This type of algorithm consumes more memory spare for preservatio, 4
of natural order of s(n) and S(K). B '

" The disadvantage of an In-place FFT algorithm is that the output appears in g
unnatural order necessitating proper shuffling of s(n) or S(K). ~J3

—_—

-f‘\_x —— &
In-place FFT algorithms are superior to the Natural Input-output FFT algorithms
although it needs 525@%(“) or S(K). This shuffling operation is known as Scrambling, '

The scrainbled value of an integer is defined as anew number generated by reversing -
the order of alTbifs in the equivalent binary number for that integer. E :

B) Another classification of FFT aléoritﬁm‘s based on Decimation of s(n) or S(K).
Decimation means decomposition into decimal parts.” X -

On the basis of decimation process, FFT algorithms are of two types:
1. Decimation-in-Time FFT algorithms.
2. Decimation-in-Frequency FFT algorithms.

1) Decimation-in-Time (BIT) FFT Algorithms. In DIT FFT algorithms, the
sequence s(n) will be broken up into odd numbered and even numbered subsequences:

e e
2) Decimation-in-Frequency (DIF) FFT Algorithms. In DIF FFT algorithms, the
sequence s(n) will be broken up into two equal halves,

Computation reduction factor of FFT algorithms
“Number of computations required for direct DFT
" Number of computations required for FFT algorithm

N2
N
‘z—logz (N)
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Fast Fourier Transform (FFT) m
ymber of Stages in DFT Computation using FFT Algorithms

\umber of stages m‘DFT computation using FFT algorithms depends upon the total number
OprintS (N) in a given sequence,

For these algorithms, number of points in a discrete-time sequence
:

N =2"wherer> 0.
—~—

cis the number of stages required for DFT computation via FFT algorithms.

Let us have a 8-point discrete-time sequence, N = 8 = 27, It requires three stages for
DFT computations. G0 LoTe I fe

In Decimation-in-time (DIT) FFT algorithm, input discrete-time sequence s(n) is in
Bit-reversed order but output, S(K) is in Natural order for in-place computation. In
Decimation-in-frequency (DIF) FFT algorithm, input discrete-time sequence s(n) is in
Natural order but its DFT is in Bit-reversed order for in-place computation. For in-place
computation smaller memory space is required.

Gene_rally, we use Radix-2 FFT algorithms. In Radix-2 FFT algorithms, original
discrete-time sequence, s(n) is divided in two parts and DFT computation is done on each
part separately and resultant of each parts added to get the overall discrete-frequency
sequence. '

In DIT FFT algorithm, original sequence s(n) is divided in even-numbered points and
odd-numbered pointsJBut in DIF FFT algorithm, original discrete-time sequence s(n) is
divided in two parts as first half and second half.JFig. 5.1 illustrates the number of stages
required in Appoint DFT computation via. DITFFT algorithm (Here N = 8).

— — TN

s(0) o—~»— 2-Point ¥ Combination
| DFT ; Of o
s(4) o—— 2}')";,}"‘ 4 [
o—p—] : > 3 ' > S(1)
‘ S Pomt >
(2) 21;’1?}[{1 = 4.ptDFT Combination |—p—o §(2)
1o of, —»—o S(3)
l.r Point
Fs [T °5®
s(1) o—»—{ 2-Point [ Con1b|2atlon = 8.point —— zig
o—— DFT > 0 > 0
) 2-Point [ DFT &0
— DFTs > o
s(3)  2-Point [™>| — 4,pt.DFT

Figl 5.1 Three stages in N-point DFT computation via decimation-in-time FFT algorithm (N = §)

ecimation-in-time algorithm
as Radix-2 DIT FFT algorithm which means the number
d as a power of 2, thatis, N=2, where M is an integer.

 This algorithm is also known
of output points N can be expresse
— e~

—_—
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: . agsumed to be a power
rocessing whore N is assumed t power of Doy
sequences h N/2, where one sequence cor Mg

(n) 18 -point L longt
Letx(ois st 'l {o two sequences of odd-indexed values of X(n) “Slstin !
break this sequence M Fodd-ndexed values of :

h ¢ Vil (\[)" | d'hb(' :
4 i S\ ‘d " lll S l .\(l ) l\l\
thL L\ LI“‘“]( = . S ~— / [

ESE] Digital Signal P

ST g
1.0,y .\'e(n):x(;’n) n=0, 1oy
. wo(S.1)

n= 0’ L.. 2

xo(n) = x(2n+1)

s Wl ]
The N-point DFT of x(n) can be written @

3 - (52
X(k) =r\z:.\'(n)\\’ti}k k=0, 1,.. N= l (5.2)

Scparatinmaven and odd indexed values of x(n), we obtain

N-1 . N-1 ok
X(k)= Zx(n) WQ“ + ZX(")WN
0

n=0

=]
e

N N,

—1
2 2

=3 x@n)Wa™ + > x(2n+ 1)w§§"+”k

=0 n=_0 "

n

N N i
—_— —1
2 2

= > x(2n) W™ + W > x@n+ W™ ..(5.3)
n=0 n=0 v

Substituting Eq. (5.1) in Eq. (5.3) we have

N, N,
2 2 :

X(k) = D X (M Wyt + Wy D x, ()W (5.4)
n=0 L n=0

we can write

: 2 .
2 _ (.-j2n/N -j2r/N/2
WN —(e ) =g )N __W .

. i.e., ngl = WN/2 (5.5)
Substituting Eq. (5.5) in Eq. (5.4) we get
N N
2 7—]
n=0
Npom B Tal v W3 (56
indexed sequence —point DFT of odd

indexed sequence
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Fast Fourier Transtb_r@@

/ = Xp()+ WX, () 65T

: : N )
Each of the sums in Eq. (5.6) is an ?point DFT, the first sum being the %-Pomt

DFT of the even -indexed sequence and the second being the *I;"-point DFT of the odd-

indexed sequence. Although the index k ranges from k=0, 1....N — 1, each of the sums are
P S
A N - N
computed only fork=0, 1.... ?-?1, since X (k) and X (k) are periodic in k with period bR
r— O~
After the two DFTs are computed, they are combined according to Eq. (5.7) to get the

. N
N-point DFT of X(k). So the Eq. (5.7) holds good:for the values of k=0, 1... 5~ = 1.
For k> N/2
W2 = Wy .(5.8)
Now X(k) for k > N/2 is given by
N _ .
X(k) = Xc(k - 3) ~ Wk N’ZXO(k —g—)fork - -I;—g fLoN-1 (59

Let us take N = 8. Then X (k) and X (k) are 4-point (- N/2) DFTs of even-indexed
sequence X (n) and odd-indexed sequence x (n) respectively,

where
x,(0)=x(0)  x,(0)=x(1)
x()=x(2) x,(1)=x(3)
x(2)=x(4) x,2)=x(0)
x(3)=x(6) x,)=x(7)
From Eq.(5.7) and Eq. (5.9) we have

X(k) = X (K) + WEX, (k) for 0<k<3

=X (k—4) - WX, (k-4) ford <k<7 (5.10)

By substituting different values of k we get ’
X(0) = X, (0)+ WX, (0);  X(H=X.(0) - Wy X,(0)
X() =X () WK, XO)= XD WX, (D)

( X(6) = X. ()~ WX, (2)

X(7) = X (3) - Ws X, (3) (5,11

X(2) = X, (2) + W2X,(2);
X(3)=X.(3)+ W; X, (3)
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- find that X(0) & X(‘”N
From the above set of equations We caf D& X(5), X

ve same inputs. X(0) is obtained by multiplying X (0) Iy oy

X(6), X(3) & X(7) ha | ! 0
(0). Similarly X(4) is obtained by multiplying X (0) s

x&nd “

.
s B

adding the product to X
subtracting the product from X (0).

This operation can be represented by a butterfly diagram as shown in Fjg )

X (0) + Wg' X, (0) = X(p)
X.(0)

X, (0 0
xe (0) - WS Xo(o) = X(4)

Fig. 5.2 Flow graph of butterfly diagram for Eq. 5.11

Now the values X(k) fork=1, 2, 3, 5, 6, 7 can be obtained and an 8-point DFT flowgraph
can be constructed from two 4-point DFTs as shown in Fig. 5.3

X0 | ? | | X(0)
X.(D=x@) —  apoin et )
X (2) =x(4) — DFT X.(2 X(z)
X,(3)=x(6) —| — X.(3 X(2)

y r _ X(3)

| S

/ 0 ”"
T ROTE S -
X,=x() — % , & X(4)
X, (2) = x(3) — . XM~ 2 X()
o 4-point X (2 : v

X, (3)=x(5) — DFT 0 4 X(6)
X, (4)=x(7) _ X,(3) 7 M X(7)

Fig. 5.3 Construction of an 8-point DFT from two 4 point DFTs
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Fast Fouricr TransforM

_mthe Fig- 5.3 we can find that initially the sequence x(n) is shuffled into even'i"dexeg
i 1ence %, (1) ?"d odd-indexed sequence X (n) and then transformed to give X (k) anl
;?czk)- For k=0, 1,2, 3 the values X (k) and X (k) are combined according to Eqs- (5-11)

§ using butterfly structure shown in Fig.5.2 ihe 8-point DFT is obtained. The inputs 0
a

ISkSEER 5 i iddle
(he butterfly 15 separated by — samples i.e., 4 samples and the powers of the tWi

factors associated in this set of butterflies are in natural order.

Now we apply the same approach to decompose each of _1;— sample DFT. This can be

done by dividing the sequence x (n) and x (n) into two sequences consisting of even and

N . .
odd members of the sequences. The L) point DFTs can be expressed as a combination of

»T:—-point DFTs.
N .
ie. X (k) for 0<k< — 1 can be written as
2k o<k
X,(K) = Xoo () + WEEX (k) for 05k <
] N N N
_—.Xec(k—%)—Wﬁ(k_md)xeo(k——Z)forz-ﬁkS?—l ) (5.12)

where X_(k) is the N -point DFT of the even members of x (n) and X_ (k) is the %-point
ec 4

of DFT of the odd members of x (n).

In the same way

N -
Xo(k) = Xoc(k) + wﬁkxm(k) for 0<k< -li_—_ 1
N N N
i) g sy - 613

: N .
Where X (k) is the _I}-poim DFT of the even members ofx (n)and X (k)isthe T -point

DFT of the odd members of x,(n)-
FOTN =8
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B o s ided into even and odd indexed sequenceg as

the sequence X (n) can be div
x_(0) = x (0% x (1) = X2
(O =3 (D (D=3

2)we have

Now from Eq. (3.1

X (0) = X_(0) + Wy X (0)
N, (D)= XD+ We X (D
X, (2)= X0+ WX (0)

X, (3) = X (D+ WX (D ~(5.14)
where X_(X)is the 2 point DFT of even members of x (n) and X, (k) is the 2-poin Dy
odd mcn:bcrs of x (n). o
Similarly
the sequence x (n) can be divided into even and odd membered sequences a5

x_(0)=x(0)x_(1)=x(2)

x_(0)=x(1)x_(1)= x,(3)

From the Eg. (5.13) we can obtain
X,(0)=X_(0)+ Wy X_(0)
X D=X_1)+ WX (1)
X, (2)=X_(0)+ Wy X_(0)

X(3)=X )+ Wy X (1) .(5.15)

where
X (k) is the 2-point DFT of the even members of x (n),
X (k) is the 2-point DFT of the odd members of X (n).

Fig. 5.4 shows the resulting flow graph when the four-point DFTs of F
evaluated as in  Eq. (5.14) and Eq. (5.15)

" F ¢S
From the Fig. 5.4 we find that the input sequence is again reordered, the input samp
f

ig. 53

N ts 0
to each butterfly are separated by n samples i.e., 2 samples and there ar two s¢P

i . ratid
butterflies. In each set of butterflies the twiddle factor exponents are same and sep?

by two.
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- Fast Fourier Transform (FFT)

For the more general case, we could Proceed by decomposing the -1::—- point transforms

2)and Eq.(5.13) int I—\]— i
in Eq-(5-1 )a S o g “Pomnttransforms and continue until you left with only

2.point transforms. Each decomp9sition iscalled a stage, and the total number of stages is
given by M = log,N. The 8-point DFT requires 3 stages. So far we have seen the
gecomposition for stage 3 and stage 2. For stage 1 the two po.int DFT can be easily found
by adding and subtracting the input sequences as the twiddle factor associated w)i,th first
st&lge IS W;'): la i'e-a

0 b
x 0 =x0=x@ | 2-point | X(0)
w()=x@)=x(4) —_ DFT | X(1)

x 0 =x(1)=%(2) — 2-point [ — X(2)

x()=x(3)=x(6) —  DFT X3

x0)=x0)=x(1) 7| 2-point X4)
. _ | DFr

x{0)=x(2) =x(5) — X(5)

x()=x(3)=x(7) —| DFT

XM

Fig. 5.4 Construction of 8 point DFT from two 4 point DFTs and 4 point
DFT from two point DFT5.

the first stage involves no multiplication but addition and subtracting. Now we have
X e (0) = X, (0) + X oo (1) = X, (0) + X, (2) = x(0) +x(4) L—

Xeo(1) = x,(0) = x oo (1) = %, (0) + % (D) = X(O) = x(4) (5.16)
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x(0) . X(O)

“ /v(v o
i \< Y, ’ X(2)

x( X(4)
o X(5)
NS A0 s
Wy
X7

" /v\\'so

Fig. 5.5. Flow graph of Decimation-in-time algorithm.

led decimation in time since at each stage, the input sequene
£

The algorithm has been cal _
uences are decimated at each Stag

is divided into smaller sequences i.e. the input seq
From the flow graph several important observations can be made.

1. Bit Reversal

In DIT algorithm we can find that in order for the output sequence to be in natup
order (i.e., X(k), k=0, 1..N—-1) the input sequence had to be stored in a shuffled order
For an 8-point DIT algorithm the input sequence is x(0), x(4), x(2), x(6), x(1), x(5),x(0)
and x(7). We can see that when N is a power of 2, the input sequence must be stored inbit
reversal order for the output to be computed in natural order. '

For N = 8 the bit-reversal process is shown in table 5.1.

Table 5.1 Bit-reversal process for N = 8 -
Input sample Binary Bit reversed Bit reversed sample
index representation binary index |
0 000 000 0
I 001 100 4
2 010 010 2
3 011 110 6
4 100 001 1
5 101 101 5
/, 6 110 011 3
/4 111 11 4’/7/
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m\'-i’ DIT-FFT algorithm K
step! i

5
5 The number of input samples N = 2M, where, M is an integer.
The input sequence is shuflled through bit-reversal,

The number of stages in the Nowgraph is given by M = log,N.

M\Q——

! N
;. Eachstage consists of == butterflies.

inputs/outputs for each hulm fly are separated by 27! samples, where m represents
the stage index, i.e., for first stage m = | and for sccond stage m = 2 50 on.

S

The number of complex multiplications is given by — log N.

The number of complex additions is given by N log, N

A
g The twiddle factor exponents are a function of the stugc index m and is given by
Nt .
= t=0,1,2,..2" =1 L(5.17)
9. The number of sets or sections of butterflies in each stage is given by the formula

2M-m'
10. The exponent repeat factor (ERF), which is the number of times the exponent sequence
associated with m is repeated is given by 2™ ™,
Table 5.2 Phase Rotation Factors for Quick Computation

Number of Stage | Stage 2 Stage 3 Stage 4 Stage 5
points in
DFT, N
4 Twiddle | W, W, = - =
No. of stages=2 | factor not
required
8 Twiddle | WO, W2 | Wy, W,
No. of stages=3 | factor not Wy, Wy
required
16 Twiddle | WS, Wit | Wi, Wi W, Wi
No. of stages=4 | factor not Wi, Wig Wig, Wit
required % Wi, Wi
———
32 Twiddle | W%, W5 | Wi Wy | Wi, Wi W,
No. of stages = 5 | factor not - Wi, Wy Wi, Wi,
R required W3
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?i i -FFT.
Draw the Flow graph of 16-point DIT FF

Solution

1. The numbero
2. The input sequence is shuffled thr
input to the flow graph.

—

f input Samples; N= !
oug

6

Table 5.3 Bit-reversal process

SN

h bit-reversal shown in table 5 3 -
Pplig
q

—— Binary ’I;it-reversal Order Bit-rem
Representation
0 0000 0000 0 T
1 0001 1000 8
2 0010 0100 4
3 0011 ~-=1100 12
4 0100 0010 2
5 0101 1010 10
6 0110 0110 6
7 0111 1110 14
8 1000 0001 1
9 1001 1001 9
10 1010 0101 5
11 1011 1101 13
12 1100 0011 3
13 1101 1011 1
14 1110 0111 di
15 1111 1111 15 ‘—_—'J
3. The number of stages M =1Iog 16 =4,
4. The number of butterflies per stage is g =8 .

5. The inputs/outputs for each butterfly in stage m is separated by 2m! samp
Inputs/outputs for each butterfly are separated by | sample-
Inputs/outputs for each butterfly are separated by 2 samP les-
Inputs/outputs for each butterfly are separated by 4 samples:
Inputs/outputs for each butterfly are separated by 8 samP =

Stage 1
Stage 2
Stage 3
Stage 4

les.
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 The pumber of complex multiplications is given by

N,
?082N=810g216=32

7. The number of complex additions is given by 16log,16 = 64

" The number of sets or sections of butterflies in each stage is given by 2"~
For Stage 1 the number of sets of butterflies are 2¢-' =8

For Stage 2 the number of sets of butterflies are 2¢2 =4

For Stage 3 the number of sets of butterflies are 24~ =2

For Stage 4 there is only one set of butterflies.

yviddle factor exponents for each stage are given by

§.

—_— = =—
Nt Z
K k=-_mt=0’1=23----2m-‘—1.
g,z_—-—/ 1;_6 h Q - O}
For Stage 1 the exponent is 0 =S K B P y
For Stage 2 the exponents are 0,4 >y o Fé\ 0.0, K= —

For Stage 3 the exponents are 0, 2, 4, 6 z*
For Stage 4 the exponents are 0, 1,2, 3,4, 5, 6,7
10. The exponentrepeat factor (ERF), which is the number of times the exponent sequence
astociated with m is repeat is given by 2¥-™.
For stage | ERF =8
For stage 2 ERF =4
For stage 3 ERF =2

For stage 4 ERF = 1.
From the steps 8, 9, 10 we can draw the following conclusion.

For stage 1 the twiddle factor exponent is zero and is repeated 8 times. (- ERF=38).
Therefore, all the 8 sets of butterflies have twiddle facts

For stage 2, the twiddle factor exponents sequence is 0, 4 and this sequence is repeated
4 times (-» ERF = 4), i.e., all the 4 sets of butterflies where each set consists of two

butterflies have twiddle factors as W,%,Wfﬁ .
ponents sequence is 0, 2, 4, 6 and this sequence is

For stage 3 the twiddle factor ex :
he two sets of butterflies where each set consists

epeated 2 times (- E.R.F=2), i.c.,allt
of 4 butterflies have twiddle factors as W,°6,W,25, W{’ﬁ, Wfa -

nents sequence is 0, 1,2, 3,4, 5, 6, 7 and ERF is
£ butterflies which consists of 8 butterflies have

. For stage 4 the twiddle factor expo
Qual to one. In this stage the only set 0

Widdle factor as WIOG,W,'MW,ZG,W,JG, Wit Wig; Wis Wis
Ursing the above steps the complete flowgraph of 16 point DFT using DIT algorithm is
“Wn as shown in Fig. 5.6.
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te the eight-point DFT of the

ompt

) sequ
adix-2 DIT algorithm. Auences x(n) = (0.5, 0.5, 0.5, 0, 0, 0} using the
UAVN,
of
Wn’ - wwiddle factors are

o=1 W'=0.707-30.707: W2 =_:.
W=l PIOT W2 == Wi =~ 0,207 9,707
) 05 N !
\(‘O)— y
x(4) =0 :
\\( : 0.5 -1.207
x(2)=0.5
0
x(6)=0
0.5-j0.207
x(1)=0.5 )
(5)=0
xG) \ 0.5+j0.207
(3)=0.5
x(3) i
X(7)=0

0.5+j1.207

X(k) =42, 0.5-j 1.207, 0, 0.5 - j 0.207, 0, 05. + 0.207, 0, 0.5 + j 1.207 }
3§ ~Decimation-in-frequency algorithm

DIT algorithm is based on the decomposition of the DFT computation by forming smaller
and smaller subsequences of the sequence x(n). In DIP algorithm the output sequence
X(k) is divided into smaller and smaller subsequences. In this algorithm the input sequence

N
x(n) is partitioned into two sequences each of length £} samples. The first sequence x,(n)

consists of first Ll samples of x(n) and the second sequence x,(n) consists of the last

N

7 samples of x(n) i.e.,
X,(n) =x(n), n=0, 1, 2,.... N/2—1 (5.18)
X,n)=x(n+N/2)n=0, 1,2,. N2-1 «(5.19)

le, [fN = 8 the first sequence X,(n) has values for 0 <n <3 and x,(n) has values for
<n<7,

The N-point DFT of x(n) can be written as
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N

—-1 N-]
2 ok wﬂk
- w4 ) x(n) Wy
X(k)= ) x(n) Wy Z;
n=0 n=-i-
3! —;Ll N/2)k
2 (n+
= Tx W+ L) W
n=0 n=0 .
N N,

2 2 nk
= 3 () Wk + W2 ) () Wi
n=0 n=0

when k is even ei™ = |

A

N,
2
X(2k) =" [x,(n) + x, ()] W™
n=0
N |
= ) [x,(n)+x, ()W, - ..(5.20)
n=0
£
(e W2 =Wyp,)
N"‘/\M

N N
Eq. (5.20) is the ?-point DFT of'the ?-point sequence obtained by adding first halfu
the last half of the input sequence.

when k is odd e7™ =— |

N

X(2k+1)= 2Z[x] (m) + X, ()W F+Dn

n=0

N

- Zo[x,(n)+ X ()W (5:21)

. N dhal
Eq. (5.21)isthe 5 -point of DFT of the S€quence obtained by subtracting the secon

. Wy
of the input sequence from the first half ang multiplying the resulting sequenc® by ¥¥

e e B ———
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" Eq (5.20) and Eq. (5.2
Eq. (5.20) q. (5.21) show that the even and odd samples of the DFT N can be

~ N .
obtained from the 5 ~POINt DETS of /(n) and g(n) respectively

where fm) =X, (M) +x,(n)  n=0,1, ) l
“. 2 —

g(n) = [x,(n)-x,(n)] Wy n=0,1,.. g —1 ..(5.22)

he Ea. (5.22 .
T 1.“, Eq.(5.22) cun_be represented by a butterfly as shown in Fig. 5.7. This is the basic
operation of DIF algorithm.,

X,(n) x,(n) + x,(n) = f(n)

Wi

X,(n) n_
[x,(n) + x,(n)] Wy = &(n)
Fig 5.7 Flow graph of basic butterfly diagram for DIF algorithm

From Eq. (5.20), for N = 8, we have

3 3
X(0)= 2 [x(m)+ X, (n)]= Y- £(n) = £(0) + £(1) + f(2) + £3) . (523)
n=0

n=0

- 2 2n
X(2) = 3 [, (m) + Xy (MIWG" = 2 F W,
n=0 n=0

W: 2(6421‘/8)4 = ejﬂ = -]

We = (62788 = o2t =1

= £(0)+ F(YWE — £(2) - FOIWs

k]
= Z f(n)=1)"

n=0

3

X(4) = i[xl(nn X (W5 =Zof(")W3 "
n=0 n=

~ §0) - f(1) + f2) — T3 s (3:24)

3
X(6)= 3, (1) + o (WG = 2 FOIR)
n=0 n=
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2
= f10) - f{1) Ws“— f2) + f(3) Wy

From Eq. (5.21) we have

)
X() = ,%[x, (n) + X, (MW = > 8= g(0) + (1) + &(2) + g(3)

a=0 R '---(5,26)
XE) = 3,0+ 5 (W = Y 2V
:_-;, . =0
= g(0) + g(1) W¢ - &(2)-g(3) A (52
3 3 3
X(3) = 2 [x () + X, ()]W3" = ) g(m)W;" = Zog(n)(—l)"
n=0 n=0 n=
= 5(0) - g(1) + g(2) - g3) (528)
3 3
X(7)= 3 [x,(n) + X, ()]We" = Y g(n)(~Wg)"
n=0 n=0
=2(0) - g(1)W; —g(2) +g(3) W2 .(5.29)

We have seen that the even-valued samples of X(k) can be obtained from the 4-poin

DFT of the sequence f{(n) where.

f(n) = x,(n) + x,(n) n=0,1...

ie., f(0) = x,(0) + x,(0)
f(1)=x,(1)+ X;(1)
f(2) =x,(2) + x,(2)
f(3) =x,(3) +x,(3)
The odd

(n) where g(n) = [x,(n) - x,(n)] wp

ie.,

8(0) = [x,(0) - x,(0)] w
8D = B(1) - x1)] !
ED = %) - x,2)) w2

80)=[x,(3) - x,3)] w3

-valued samples of X(k) can be obtained from the 4-point DFT of the sequer”

(5.30)

(53
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Using the above information and the butterfly s - o 6 7 we can
graw the flow graph of 8-point DFT shown in l«‘ig.yS.SS.mcmrc gt JEEIE
: N0y

(U x(0) 0 (—

\.m:-x(l) \{ 1e)) N . X(0)

X, W) 2) ?—poml DFT — X(2)| even samples
)= x(2) w ) L X(4)| of X(k)
(@3 \ON ) X(6

1 “’l‘ ”’ pe

S

x(0)=x(4) | L) — X(1)

x:(l)-‘-X(S) 0 N ) —— X(3) odd samples
X2(2)=x(6) &2) 7 “point Bk L X(5)[of X(k)
x3)=x() &) _ X(7)

Fig. 5.8 Reduction of an 8 point DFT to two 4 point DFTs by decimation in frequency

N
Now each E-point DFT can be computed by combining the first half and the last

N N
half of the input points for each of the E-point DFTs and then computing T-point

DFTs. For the 8-point DFT example the resultant flow graph is shown in Fig.5.9

f0) f0) + f(2)

_ A Wo 2_ H S 0
BRI “ e | oot |
= X(4
"7 {0) - f2) 5
X,(2)=x(2) o 2-point [ X(2)
x2(3).—._ X(3) [f( )-3)] Wy DFT L x(6)
g(0) +g(2)
x,(0) = = X()
X (l) * B * &) 25}2’?[ X(3)
) 225
X(2)= X(6) ) 2-point [ X@3)
X,(3)= X(7) [e(D-eB3)Wi| DFT __ X(7)

Fig. 5.9 Flow graph of decimation in frequency decomposition of an 8-point DFT into
| four 2-point DFT computations

h
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1 L Su 0]
The 2-point DFT can be found by adding Points, Thep:

- 1
can be further reduced as in Fig. 5.10. 83y

)+ 10+ 1)+ gy

x,(0) = x(0) f(0) + f(2) - (1) - f3)

SR =X@)

X, (1) = x(1

e f(0) + f12) + A1) W2 +

X,(2) =x(2) : “3)\\/; y
53) =x(3) R0) - £2) - f11) W2 +1(3) 2 x 0
. 1 — 8§ (6]
(1) = x(4) 8(0) + 220+ &(1) + g(3) =,
X, (1) =x(3) g(0) - 8(1) + g(2) - g(3) = X

8(0)- 8(2) * &) Wy'-g(3) 2

g(0) - 8(2) - 8(1) Wy +g(3) Wy

x,(2) = X(6)
x,(3) =x(7)

X0

x(0)
x(1)
x(2)
x(3)
x(4)
x(5)
x(6)
x(7)

Fig. 5.11 Flow graph of Complete decimation in frequency decomposition of a"
8 point DFT computation

. . . .o 5l
The complete flow graph of 8-point DFT using DIF algorithm is shown In Fig.)

From the Fig. 5.11 we observe that for DIF algorithm the input sequence is in nﬂfr”trael
order, while the output sequence is in bit reversal order, whereas the reverse is t(uc fo
DIT algorithm. The number of computations required is same as DIT algorithm-
basic computational block in the diagram is the “butterfly” shown in Fig. 5.12.
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Fast Foutier Transform (FFT),
/ X.(p)

X, (p)=X_(p)+ X_(q)\
[

e

A

e

X (q) > .
| Xo. (@)= [X (p) - X (9)] Wy

Fig. 5.12 Basic Computational diagram for DIF-FFT

Like DIT algorithm, DIF algorithm also in-place algorithm where the same locations
are use to store both the input and output sequences.

ﬁps for Radix - 2 DIF-FFT algorithm

. The number of input samples N =2 , where, M is number of stages.

The input sequence is in natural order.

The number of stages in the flow graph is given by M = log N.

NN

N
4. Each stage consists of —- butterflies.

fv%f“

5. Inputs/outputs for each butterfly are separated by 2™ samples, where m represents
the stage index i.e., for first stage m = 1 and for second stage m =2 so on.

6. The number of complex multiplications is given by
1. The number of complex additions is given by N log, N.

8. The twiddle -factor exponents are a function of the stage index m and is given by

m\t =0,1,2,.2" " . (532)

The number of sets or sections of butterflies in each stage is given by the formula
2™

A0. The exponent repeat factor (ERF), which is the number of times the exponent sequence
associated with m is repeated is given by 2
Differences and similarities between DIT and DIF algorithms
Differences
For decimation-in-time (DIT), the input is bit-reversed \jvh.ile the output is in natural
order. Whereas, for decimation-in-frequency the input is in natural order while the
OUtput is bit reversed order.

o

3§
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2. The DIF butterfly is slightly different from the Dlzov:herem DIF the on
multiplication takes place after the add-subtract operation. Pl

Similarities -

Both algorithms require N Tog, N operations to compute]: the DFT. Bog, algory,
can be done in-place and both need to perform bit reversal at some place durip, ¢
computation. H

LExanple 3.3 |

Compute IDFT of the sequence X(k) = (7, - 0.707, —j, 0.707, 1,0.707 +j0.707 ;

_ 5 =07
+10.707} using DIF algorithm. ;
Solution
4 0.5 I o
x(0)=0.5 W Y 2 =X(0)
x(1)=0.5 0 =X(4)
X(2)=0.5 0 - =X
x(3)=0.5 0 =X(6)

x(4)=0
x(5)=0
x(6)=0
x(7)=0

0.5-1.207=X(1)
0.5-j0.207=X(5)
0.5-j0.207=X(3)
0.5-j1.207=X(7)

—0.3535-j0.3535

X(k)={2,0.5-j1.207,0,0.5 -j0.207,0,0.5 +j0.207, 0, 0.5 +j 1.207}

Compute 4-point DFT of a Sequence x(n) = {0, 1, 2, 3} using DIT, DIF algorithm.
Solution ‘

DIT algorithm

Twiddle factors associated with butterflies are

W40 - l, W4| =e-2j1c/4 = -

Bit reversal of input is given by

Input index Binary index Bit-reversal  Bit-reversal index
0- 00 ol '00 0
1 01 10 : 2
2 10 01 I
38 1 1 3
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S
Input 1
Output
=0 p
0) X(0)
= 0
x(2)=2 W, . X(1)

x(1)=1 » X(2)

x3)=3 7 W? W, X()

—_—

[nput S Output
P

0. 0+2=2 2+4=6

2 0-2=-2 ~2+(=j)(-2)==2+73j

1 1+3=4 2-4=-2

3. 1-3=-2 ~2-(=)) (D=-2-2

X(K)={6,-2+2j,-2,2 -2}  ¢__

DIF gl
Input :::f. Output
W, X(0) -
X@2)
X(1),
X(@3)
Input " 1§, Output
0 0+2=2 2+4=6-
I 143=4 2-4=-2,
1 0-2=-2, —2+2
3 (1 _3)(_j)=2j : —2—2j
\
. =
X(k)={6,-2+ 2j,-2,—2- 2j}
~ mesr
Ly BT a° ) 4= o, drols 1
t 3’ ) L O N gp/{ o t J
o, vt L7 CIn PEL)
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"QUESTIONS AND ANSW

Q.1 Whatis FFT? ¥
Ans - The fast Fourier transform (FFT) is an algorithm used to compute the.DFT. It makeg Use 4
the symmetry and periodicity properties of twiddle factor W to effectively reduce the .|/
computation time. It is based on the fundamental” principle of decomPOSl{lg the Computai,, g
of DFT of a sequence of length N into successively smaller discrete Fourier transforms, The
FFT algorithm provides speed-increase factors, when compared'wnh direct computatig, of
the DFT, of; approximately 64 and 205 for 256-point and 1024-point tr ansforms, respectivefy

Q.2 Why FFT is needed? f
N-1 ,

Ans The direct evaluation of DFT using the formula X(k)= Z x(n)e #*™'N requires N
n=0 /t"

complex multiplications and N(N — 1) complex additions. Thus for reasonably large valyes u

of N (in the order of 1000) direct evaluation of the DFT requires an inordinate amount of

computation. By using FFT algorithms the number of computations can be reduced. For |/
example, for an N-point DFT, the number of complex multiplications required using FFTis |,

N
> log, N. If N = 16, the number of complex multiplications required for direct evaluation |

of DFT is 256, whereas using FFT only 32 multiplications are required. ]

Q.3 What is the speed improvement factor in calculating 64-point DFT of a sequence using i
direct computation and FFT algorithms?

or l

Calculate the number of'multiplications needed in the calculation of DFT and FFT with
64-point sequence. |
Ans The number of complex multiplications required using direct computation is
N2 =64%=4096

The number of complex multiplications required using FFT is N

N 64
—2--log2 N= —é-log,_ 64 =192.

Speed improvement factor = —]g=' 21.33

Q.4 What is the main advantage of FFT?

Ans FFT reduces the computation time required to compute discrete Fourier transform.

Q5

Caiculate the number of multiplications needed in the calculation of DFT using FFT algorithm
with 32-point sequence. .
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poit DFT the number of complex multiplications needed using FFT algorithm is
forf

1

Njog N
: N=32, the number of complex multiplications is cqual to
Fol'

.323|og232=16x5=8o.

How many multiplications and additions are required to compute N-point DFT using
I?

rﬂdi.\"2

The pumber of multiplications and additions required to compute N-point DFT using

N
adix-2 FET are N log, N and L) log, N respectively.

\What is meant by radix-2 FFT?

e slgorithm 15 most efficient in calculating N-point DFT. If the number of output
points N can be expressed as a power of 2, that is, N = 2™ where M is an integer, then this
algorithm is known as radix-2 FFT algorithm,

o8 Whatare the differences and similarities between DIP and DIT algorithms?
us Differences ;

| For DIT, the input is bit reversed while the output is in natural order, whereas for DIF
the input is in natural order while the output is bit reversed.

2. The DIfFbutterfly is slightly different from the DIT butterfly, the difference being that

the complex multiplication takes place after the add-subtract operation in DIP.
Similarities
Both algorithms require same number of operations to compute the DFT. Both algorithms

can be done in-place and both need to perform bit reversal at. some place during the
computation. ‘

03 What is the basic operation of the DIT algorithm?

A The basic operation of the DIT algorithm is the so called butterfly in which two inputs
X.(p) and X _(q) are combined to give the outputs X ., (p)and X ., (q) via. the operation

Xm+l (p) = Xm(P) + W}t(lxm(q)
Xm+l w= Xm(P) 5 Wﬁxm(q)

W . . =
here W is twiddle factor.,

'10 W S
Thhat 'S the basic operation of the DIF algorithms?
€ basic operation of the DIF algorithm is the so called butterfly in which two inputs
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X,.(p) and X,(@) are combined to give the outputs X ,,(p) and X . (q) via the OPery
' N
xm'l(l)) = Xm(p) + Xm(q)

Noor(@) = [X,0(p) = X (9)] W

where Wr:i is twiddle factor.

Q.11 Draw the flow graph of'a two-point DFT for a decimation-in-time d°°°mposition

Ans  The flow graph of a two-point DFT for a decimation-in-time algorithm is

p _
X =X.(p)+X (q)
X () D)= X0

q
=X, (p)- X
X 7 W, Xan(P) =X, (p) - X,(q)

where X.(p) and X,,(q) are inputs to the butterfly, X..1(p) and X, .,(q) are outputs of the
butterfly. The nodes p and q represents memory locations.

Q.12 Draw the flow graph of a two-point radix-2 DIF-FFT.

Ans The flow graphofa two-point DFT for a decimation-in-time frequency algorithm is

X, PNy WY Xon(P) =X, (p) + X (q)

q X .p)=X(p)-X
xm(q) m I.(p) ,.,(P) m(‘i)

where X, (p) and X, (q) are inputs, X_ (p) and X__ (q) are outputs of the butterfly. The
nodes p and q represents memory locations.

Q.13 Draw the basic butterfly diagram for DIT algorithm.
Ans The basic butterfly diagram for DIT algorithm is

p
X..(p) :
' Xon(P) =X (p) + \:V,‘j X, (9)
q
X, X (@ =X (p) - WEX, (@)
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< (p) and X, (@) are inputs to the butterf] bbb St S e
whe ﬂ\,m']‘hc nodes p and q represents memory |<;cm"i‘(‘)‘.(,2) id X, (q) are outputs of the

putter™ o .
W the basic butterfly diagram for DIP algorithm.
oM he pasic putterfly diagram for DIP algorithm is
0 bas
¢ y 4 k
i t\m(p) WN xm.'(p} - Xm(p) } Xm(")
q
Xl X, () = [X,(p) = X (@) Wy

where Xm(P) and X (q) are inputs, X , (p) and X __ (q) are outputs of the butterfly. The
nodes P and q represents memory locations.

s What is meant by ‘m-place’ in DIT and DIF algorithms?

putterfly diagrams used in DIT and DIF algorithms are shown in Fig. | and Fig. 2

s Thebasic
rcspectlvely.
X_.(0)+ Wy X, (@ P X_(p) + X,(@)
p ' N X_(p) Wy
X.(p)
X P g X (p) - X (QWs B
o N xe-WE XK@ X0 PP -@ N
Fig.l Fig.2

es cross each other and connected to two

In the Fig. 1 two lines emerging from two nod ' .
ents memory locations. At the input nodes

nodes on the right hand side. These nodes repres
X(p)and X _(q), the inputs are stored. After the outputs X, (p) and X (@) are calculated,

the same memory location is used to store the new values in place of the input values. An
algorithm that use the, same location to store both the input and output sequences s called
N H
o an ‘in-place’ algorithm.
16 How we can calculate IDFT using FFT algorith ?

A . i rlainG
" The inverse DFT of an N-point sequence X(k); k=0, |...N-1is defined as

N-1
x(n) = _;Iz X(K)We™ (1)
k=0

If .
"¢ take complex conjugate and multiply by N> e get
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N-) , L
Nx () = Y X (WY w0 (2) &
k=0

s DET of the sequence X'(k
The right hand side of the above equation 18 DF1 oil‘tl:; ncc]\(n) - t(hc)nl::]\d May
computed using any FFT algorithm. The desired ont piut .stlt} i 'givc ¢ obty
by complex conjugating the DET of Eq. (2) and dividing £ '

| N=l . nk
x(n):ﬁ[z.\' (k)\\’N

k=0

Ingg

Q.17 Draw the 4-point radix 2 DIF-FFT butterfly structure for DFT.

Ans 70
N0~ W \

x(1)
NE)
x(3)
Q.18 Draw the 4-point radix-2 DIT-FFT butterfly structure for DFT.

Ans x(0) i

X( l) :‘
x(2)
x(3)

Q.19 Find DFT of the sequence x(n) = {1, 2, 3, 0} using DIF algorithm.

4

Ans x(0)=1 \%
-2

WP

x(1)=2
x(2)=3 et
‘ 2+2j=X(@3)
The twiddle factors are W= 1; Wj=e"™=_j

X(k)= {6,-2,— 2j,2,-2+2j}
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¢ the applications of FFT Algoritlyms 2 B

Ll:0 qpplicmions of FFT algorithms includeg
1he § '

W i near filtering, (i) Correlation, (iii) Spectrum analysis
(i ,

 EXERCISE

Write the equations and draw the signal flow graph for the decimation in frequency algorithm
~ N ::4
for N =%

praw the signal flow graph of decimation-in-time algorithm for N = 8,
pute the DFT for N =4 if
x()=1 0<n<3

using the decimation-in-frequency algorithm.

Com

Compute the DFT of the sequence for N = 4 if
. N7
x(n) =sin—
(n) >

using decimation-in-time algorithm.

Find the DFT of the following sequences using decimation-in-time (DIT) and decimation-
in-frequency (DIF) FFT algorithms.

() sm={1,1,, 1,1, 1,1, 1}
(b) s(n)=1{1,0,0,0, 1,1, 1,0}
(c) s(n)={1,0,0,1,-1, 1}

(d) s(n)={1,1,1,1,0,0,0,0}
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