Notes on

Electronic Measurement and Instrumentation

by

Satya Narayan Panigrahi

Lecturer in Electronics and Telecommunication Engineering
UGMIT, Rayagada

Erecore Analysis:-
Ereron:- The deviation of meapurued aumatity from the is called erreore. actial value, is
(E)

$$
E=A_{m}-A t
$$

fre (ort)
meáaured $\begin{aligned} & \text { value acfual value } \\ & \text {-ve: Ererore may be (tre) }\end{aligned}$
$+V e \rightarrow A m>A t$. Errore classified in -ve $\rightarrow A_{m}<A_{t}$, to 2 types.
(1) Statio Eurore.
(2) Dy namic
(1) Static Eruror:-

The ereror independent which is indeperdeat of time.
(2) Dynamic Ericaris The everore depe Ontime are called dynamic ads ererore:
correction factor [C.FI:- The value which we are added (ore) subtracted from the meapurted quantiry in ordere to get true value is called connection factore.

Cif: may be fre (ore) -re. $C \cdot f:=-(\varepsilon)$
If
$\varepsilon=+v e, c . f=-v e$
$=-v e, c \cdot f=t v e$

$$
\varepsilon=-v e, c \cdot f=+v e
$$

Relative static Ererore "
The erereore faken overe the freve value.

$$
R \cdot G E=\frac{\varepsilon}{A t}=\frac{A M-A t}{A+}
$$

It determinces the guality of enstrenment.

$$
\begin{aligned}
& A \\
& A_{t}=2 A \\
& A_{t}=1000 \mathrm{~A} \\
& \frac{\varepsilon=1 A}{\% \text { RISE }} \\
& =\frac{1}{2} \times 100 \\
& =50 \% \\
& B \\
& \varepsilon=10 \mathrm{~A} \\
& \text { T/RRSSEI }=\frac{10}{1000} \times 100 \\
& =1 \%
\end{aligned}
$$

Limiteng frror of It is speceified by the, manufactureer, It willqive the rarge of opern, It exs aluways wront. freve value. The othere name ess Tolerence and uncere. tain $+y$.

fort as 2×129.10001
210.04

similarly

$$
\begin{aligned}
& \text { Similarly } 2 \times \pm \frac{0.05}{100} \\
& = \pm 0.01 \\
& (2 \pm 0.01) \\
& 1.992 .01
\end{aligned}
$$

Let 2 A is true value, then Limiting error gives the range of operation.

$$
\begin{aligned}
& =\frac{q v o l t}{2 m A} \equiv 9 k \Omega L
\end{aligned}
$$

ELECTRICAL MEASUREMENT:- 9.9
Que: A ($0-10$) Amp with $\% L \cdot E= \pm 1 \%$ If we measure a true value or I.tup with this meter. Then the range of carrion cis.

$$
\begin{aligned}
& \text { range of } 2 \times \frac{ \pm i}{100}=\frac{ \pm 0.02}{\text { measuring } 2} \mathrm{c} \& \\
& \text { Range of error }
\end{aligned}
$$

Range of error

$$
\begin{aligned}
& 2 \pm 0.02)=\frac{1.98 \text { to } 2.02}{\text { value. }} \text {. } 2 \text { verger } \\
& 2 \text { value. }
\end{aligned}
$$

0-10 is fullscaile value.
True value $\left(A_{t}\right)=2$
measured value (Am)
is $\underset{\sim 1}{(1.98}$ to 2.02)
$A_{M}-A_{t}=\epsilon$ (Error).
Basic characteristics of an instrumats

$$
\begin{aligned}
& A \Rightarrow \text { Accuracy } \\
& p \Rightarrow \text { precision } \\
& L \Rightarrow \text { Linearity } \\
& S \Rightarrow \text { sensitivity }
\end{aligned}
$$

$D \Rightarrow$ Dead Time.
$D \Rightarrow$ Dead zone.
$R \Rightarrow$ Resolution.
Accuracy: it indicates the degree of closeness of measured quantity to true value.

when \pm symbol
NBestinstrument there we w 81 see minimum value. when \pm not arablabe $\widetilde{\omega}$ the highest value.

Backward

$$
\pm 1 \%
$$

forward 99%

Guaranteed Accuracy Error (G.AE.) or a cos specified by the manufacturer. It cis a constant error seinby the instrument. spence the GATE. iq \& w.r.t. fullscale value.
Range

$$
10 \times \pm \frac{1}{100}= \pm 0.1
$$

G.A.E, conktant $B C=$ fullscak onstand
\Rightarrow As the pointere reaches to tollscale value the $\% L F$ deerrages but the quatean G.A.E. constant. since MrLE. Us w.rit. true valve. But \% GM.E. is w.rit' full socisle value.

Queg A (0-10) Amp ammeterc co ofta $G \cdot A: E= \pm \pm \%$. It we measure a frue valve of 2.5 Amp fhen the \%.L.E. es
$\angle O 11^{\prime} \cdot(0-10) A M P$

$$
\because G \cdot A \cdot E= \pm 1 \%
$$

今

$$
10 \times \pm \frac{1}{100}= \pm 0.1
$$

$$
2 \cdot 5 \pm 0.1
$$

$$
\begin{aligned}
& \Rightarrow 2.5 \times \frac{x}{100}=0.1 \\
& \Rightarrow x=7 \pm 4 \%
\end{aligned}
$$

$$
\begin{aligned}
& \because L_{0} E \text {, } \\
& 1 \mathrm{AmP} \underset{\sim 1}{ } \rightarrow 1 \times \frac{x}{100}=0.1 \Rightarrow x=10 \% 1 \\
& 2 A \pm 0.1 \quad-2 \times \frac{x}{100}=0.1 \Rightarrow x=5 \% \\
& 5 A+0.1 \longrightarrow 5 \times \frac{x}{100} \quad 2=0.1 \Rightarrow x=2 \%, \begin{array}{l}
x \\
.1 \%
\end{array} \\
& 9 A \pm 0.1 \sim 2 \times \frac{x}{100}=0.1 \Rightarrow \quad x=1.1 \% 1
\end{aligned}
$$

ave各 A（O－10 0）volt）voltmeter with G．A．E．of 98% ．If we meafureve a true value of 25 voltevith this meter．Then $\%$ of L．E．if．

SO1 no
${ }^{1}$
a_{c}
；
（
＇t Que：A o to 10 Amp ammeter with a G．A．E．$\pm 1 \%$ of reading，If we measure $a^{\text {a true value of } 2.5 \mathrm{mp}}$ ． Then the $\%$ LE $E=$ ？
Son：Reading $=2.5 \mathrm{zmp}$

$$
\begin{aligned}
& \text { G.A.E. of reading }= \pm 1 \% \\
& \text { LO LE. W. } \mathrm{ta} \text { true }
\end{aligned}
$$

$$
c ゙ q= \pm 1 \%
$$

precision：the most repeatable value（ere）repproducable value out of set of recartely records is known as precession．

The accurate instriment maybe preceise. But precelke will not. conform any accuracy. Be profers a/ways preclise instruments.
Lenearity\% Twe op follows the ilp with the lonear rueln(ore) linear.asn

$$
\begin{aligned}
& I=(\varepsilon / \rho) \\
& f=\text { Force }
\end{aligned}
$$

$$
\frac{T}{\sim} \text { is }
$$ me a queabr suantion in eveny metrit. (a) pole the edrcwitayy.

1. All meters are ton en energy coneregion device. Electrical to meshara

$$
\begin{aligned}
& \theta \propto \perp[\text { cincart } \\
& \theta \propto I^{2} \text { [nonLincert] }
\end{aligned}
$$

if

$$
A t^{\prime}=\angle A_{A} m D
$$

V Linear Technology.
(1) (0-100) A (x)
(2) $(0+20) A(x)$
(3) $(0,50) A$ \qquad lave to entering
Regin.
we have to select always the meters in such a way that in the pointer should en we may not linear region. so we may not
loose accuracy loose accuracy.
sensitivity ana (s)

$$
S=\frac{\text { change in } \sigma / p}{\text { unit change en of } / p}
$$

It is, the patio of change in $0 / p$ to the unit change in $^{2} / \mathrm{p}$. we prefer always high sensitive instruments. So that we maynot loose accuracy. $\beta O \quad S=\frac{\Delta Q P}{\Delta e / p}=\begin{aligned} & \text { slope of Input /output } \\ & \text { characteristic of cain of }\end{aligned}$ sen sita tidy.

$$
\rightarrow s=\frac{1 a n \theta}{\operatorname{soct}}
$$

 sensiteivigy $S=\tan 45$

$$
\begin{aligned}
& 5001150=45.45 \\
\Rightarrow & 150 \times \frac{45.45}{145.45}=46.87 \mathrm{rolt} \\
& =5000 \mathrm{kR}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow 145.45 \\
& \frac{10 \mathrm{KL}}{V} \Rightarrow 50 r 01 \mathrm{~F}=5000 \mathrm{kR} \\
& 49.9 a y
\end{aligned}
$$

$$
\begin{array}{r}
V \\
50115000 K \Omega=49.9 a q \\
150 \times 49.999
\end{array}
$$

$$
\Rightarrow V_{m}=\frac{150 \times 49.999}{149.909}=49.9991
$$

If $N \frac{\infty}{V}=S_{s}$, then $V_{m}=V_{t}$
sothe errer can be mincimezed.

$$
\begin{aligned}
& 5001150=45.45
\end{aligned}
$$

$S=-2 / v[$ for [voltmete re $]$

$$
\cdot \frac{1}{(v / Q)}=\frac{1}{I_{\text {ESD }}}
$$

fullscall detection went.
Que: A ot Yovol voltameter wi of asenseitivety of $\frac{20 \mathrm{k}-\Omega}{V}$. Then find the allowable current through the meter at halt full slate reading.
sol:-

$$
S=\frac{1}{I F S D}
$$

$$
\Rightarrow I_{F S D}=\frac{1}{s}
$$

$$
=\frac{1}{20 \frac{\mathrm{k}-2}{v}}
$$

$\frac{\text { IFS }}{2}$
ELECTRONIC MEASUREMENT:
DC Vole meters
(aves: A DC voltmeter with a figure of merit of $20 \frac{\mathrm{~K}}{\mathrm{~V}}$ is used to meansure halt full scale voltage in lou $D C$ range, Then the current these the meter is -.

Instrument and meter:Instroment
iq a partof meter.

Ingtriment can be made doffercent Ameters ire. Ammeter and roltmetere.

Instruments 2 + hap no applivetion But when we.ve Instrument - af dibf. meteres pren tue metere can meapure depperent quantities.
LAmmetre can be used in sereief. voltmiter: 11 in parcallel.

Hir voltmeter osused af commeter fren curcent uill notgo throvge voltmetere. (notiong happen.)
Ly But Df ammeter if Byonistake used af voltmetere fien hige current wollbe an pasd and $^{\text {ber }}$ if anmetere will be damaged.
\Rightarrow ff roltmeter range ingreabe $\left[6,10^{2}, 20^{2}, 30^{\circ} \ldots\right.$) the epecie Ω Resistance increape.
AnIf. Ammeter range cincreoge ($0,10 A_{1}$ 20A, 30A, ..) the qhunt ruesistanct decreases.

Woltareten:- A hoger resoctance des on ceries with instroment eqcalled. voltmeter.

Anmetere:
onchusionst By connceting row respigtane (al) aloss $(0 \pi a l l e x$ to the onstroment of called Anmetere:

The value of $R_{\beta}=\frac{R_{m}}{\left(\frac{I}{I m}\right)-1}$.
Hothe value of $R_{s e}=\operatorname{Rm}\left(y^{m-1)(0 \pi)}\right.$

$$
=\operatorname{Rm}\left(\frac{v}{v_{m}}-1\right)
$$

$m=m u 1+8$ plication factor:
\rightarrow For highere value of curerent the woll be decrease. for a internal fistance valier of voltage. Rse value. incrueres.
\rightarrow Ammeter we have to connect alcuay in the cit insercies. since inside ammeter parallel aft of there, so that wrent w, \%HI aivide. sinffrumert will be \&ate.
Lsvoltmeter we have tecone of en the okt paraliel, since cinsede the voltmeter cerliops ckt is therve. so that roltage wollbe \& af oll be Scanned by CamScanner

LI In Both ammeter and vol\% mete the responsible avanysy is current.
\rightarrow The incefrement is a pares of meter.

Dead Time:

$\theta \propto \mathbb{R}$
$\theta \propto I \alpha v$ $\theta \propto v$

In all electrical Instruments the responsible quantity is current. In case of current measurement θ \& I.
Min lase of voltage. Measurement o\&2.

$$
\Rightarrow 0 \alpha V
$$

NOTE:- In all electronic instrument the responsible quantity 108 voltage.
scalcout there mean sicetrical instréres. Digentay display. is - ancremeans elector

) ril electreical cinstrumentg arce enorgy $\stackrel{H}{ }{ }^{}$ converters. But electronec inctru1 ments are not energy convereters. wectromic. cinctruments are lpast repponge on strwments ap comparce to electrical 11 pirner trese is no energy converscion,
visnall electron ic inftrument vortagepulsug areentereing. [counter well there for proviste the e/p. 1

Tino timp taken bs the instrument to move the pointer from its initial posiotion ef falleo dead trime. incleetrical instrument dereltitme is more.

Dead fime can notbo aliminated but reducerble by mand
the pointere with very light material (alumonium).

The main reapon
for dead teme is Ineretiea fllta cinstrecoments will experitience bota the treansient aswellas steadystate. 2nivially recansenent bernally recachos to $\sqrt{ }$ ateady ayetem.
Dead zone: or \uparrow where seyand which
of the crexponse werl
come is called dead zone. (or) Threstold.

Isp
store instru mont. So is is the
Resolution:- (R): we pret ar always hogan resolution cis more the the refold is more fo flat clarity may not loose accuracy
we mas we 12.5

The smallest op that we can detect in the scale wo th cerctanity in the scalp cos called Resolution

The s mallust change in input that we can detect wish cerpainexy (or) clarity is calreof Resolution:

$$
R=\frac{\text { Full scale value }}{\text { Total no. of divisions }}
$$

Here If No.0t Divisions increases, our resolution also increases.

TYPES OF ERRORS
(1) Gross: evener.
(2) Systematic.
(3) Random

Systematic error

Instrumental environmental observational error. error
(1) Gross Error:- All the human negligence errors by taringthe reading (or) whole operating fir calculator arg comes under Gross errors.
LIt is not common to all humanberings. Instrument al errors-

Environmental Errors any error comes due to environment cord. observational Encore: (poi) parallax It iss "common
to all human bee inge.
Random error" There of no particular reason footerrore. It accurestrands

The Randoon errores maybe (tre) may be (-ve). All the sinstoverents may offer Random errere. Ranolos erecores can be solved by uscino mathematical +001 statistices. like. Arithmaticg mean, mode, and standared deviation.
Random ereror Analysis :-

Electronc. meaqurement is considur, below cht.
True cht. cond 4 \& -

$$
\begin{aligned}
& R_{L} \text { (true) }=R_{L} \| \infty \\
&=R_{L}^{\prime} \\
& V_{L}(\text { trese }={ }^{\prime} V^{\prime} \text { acros\& } R_{L} \\
&=r_{C} \times \frac{R_{L}}{R_{S}+R_{L}} \\
&= \text { True (ore) Actual } \\
& \text { voltage. }
\end{aligned}
$$

Electrical meaqurementy:-
Random ererore analysisis:-

No.ot 1

$$
\begin{aligned}
& \text { probable Eicror }= \pm \pi \\
& = \pm 0.67450 \\
& \dot{\sigma}=\text { standard Deviation } \\
& =\sqrt{\frac{d_{1}{ }^{2}+d_{2}^{2}+\cdots+d_{n}^{22}}{(n-1) \cdot}} \text { 日It } n>20
\end{aligned}
$$

canal deviations are more probable compare to large deviations.
NOTE:- In case of addition and subtractions, the absolute evicors will, be, added up.
Let $R_{1}=(100 \pm y),{ }_{2} \quad R_{1}+R_{2}=(150 \pm 6)-2$

$$
\begin{array}{ll}
R_{1}=(100 \pm y) & R_{1}-R_{2}=(50 \pm 6)-2 \\
R_{2}=(50 \pm 2)
\end{array}
$$

MoT:-(2) In case of multiplication and division the percentage erratas will be added up.

$$
\begin{array}{ll}
\text { vil be add } & \\
\begin{aligned}
R_{1}=50 \pm 6 \% & R_{1} \times R_{2}=500 \pm 9 \% \\
R_{2} & =100 \pm 3 \%
\end{aligned} & R_{1} / R_{2}=5 \pm 9 \% \\
R_{1}^{2} \cdot R_{2} & =5000 \pm 2 \times 3 \%+1 \times 6 \% \\
& =5000 \pm 6 \%+6 \% \\
& =5000 \pm 12 \%
\end{array}
$$

which of the following poceres sourele bor an externay fion.
(a) PMMC meter...
(b) Heart wirce".

EVM metare.
(d) ED和.

Wies which of the follouring devicg is ufed at the rit ftages eletronoc voltmetr:
of an BJT. (b) SCR
(C) MUSFET.
(b) $\cup J T$.

BCZ High enprt
-x-
Electrical measurements:-

8% $x_{200}^{200}=2$ $\Rightarrow x=10 \%$ $3 \%+2 \%+10 \%$ $=15 \%$

$$
\begin{aligned}
R_{2}=\frac{R_{1} R_{4}}{R_{3}} & =\frac{100 \times 20}{50} \\
& =40 \pm 15 \%
\end{aligned}
$$

Que f 3 voltmeters are connected in series across $120 \mathrm{volt} d c$ supply. The voltmeters ane ${ }_{r_{1}}=100$ and $50 / \mathrm{Amp}$.
 5 rr. abd

120 Volt DC

Then estimate the each voltmeter e reading.
sal io

$$
R_{1}=100 / 5 \mathrm{mt}=20 \mathrm{k}-2
$$

$$
R_{2}=100 \mathrm{~V} \times 250-2 / \mathrm{V}
$$

$$
=25 \mathrm{~K}
$$

$$
\begin{aligned}
& I=\frac{12}{(20+25+5)}=20 \times 2.4=2 \mathrm{~mA} \\
& V_{1}=R_{1} \times I=48 \mathrm{~V} \\
& V_{2}=R_{2} \times I=25 \times 2.4=60 \mathrm{~V} \\
& V_{3}=R_{3} \times I=5 k
\end{aligned}
$$

Que: A wheat \&tone Bridge is baling with all four Resesestance, ad equal to $1 k-2$. The 3reidgt supply voltage cis 100 V . The value of one of the reescestançe es change to 1010Ω.

Electrical meagurement:- In all elcetrical Instruments the responsib/e quantity os current. it en to force.

1 +庆㩆
(I)

Due tocurrent effeets following
(1) magnetic effects are araitwe.
(D) Thermal
etfocet: $D A c i s u c d$ for iproviding porce.
(3) Electrostatic.
(1) Induction "
(20) enfects a vailable.

Bascically thereare 3 forces will be dereloped in eleetrical instroments
They are (1) mefolection force
(or) Torque (T_{d})
(2) Control force (T_{c}) (ore) Tonque.
(3) Damping force,
(1) Deflection Forces (or) Porique $\left(T_{d}\right) \div$
It $i s$ the force resucered to move the porntere ot fromits initial poscition by using any of cats chfect is calied Defleetion Toreque. But bcz. It this foree the pointere continvovig weall rotate which is undesirable. We requireg prepotional o/p to the e/p, fore that we need one anore force in the meter which isoppor siete in diren to the detples ction Torque, is calleo contreal Torque.

1. (2) control, Forere: $1+$ is the force which opposiste cos arrection
to the deflection torque. when $T_{d}=T_{G}$ paepoinyer. will come to stead \&tape. W ut before coming to the stead st state the point will mate somang oscere: again which is Undesired is we need one more force ins the meter to reduce on ξ° / c no. of oscillation os called Damping force.
Damping force: $1+$ is the force required to reduce the noiof oscillation at steady state.
controlling torque is responsise to top the pointer at varieves revels. when tue ip is removed T_{c} iss responsible fore taking the pointer again to initial position. Fun of TC.
Q It will preside a proportional Qp p to ip p.
(2) when the isP has been removed the pointer should come
bag to initial position.
Damping forcing $T_{C} i^{*} \dot{s}$ crested due to $T d$ in opposite dire action of Td.
Damping forcer it make to reduce the speed of the pointer. so that the non of oscillations will be reduced at st ready quite.
Mechanism fore producing Deflection Tore que:-
By using magnetic Effect:
(a) force between permanent fore-ce bet we current carrying
magnet and coed.

$$
1 \left\lvert\, \begin{array}{ll}
11 & { }^{11} \\
\kappa & 2 \\
& 2
\end{array}\right.
$$

$$
\begin{aligned}
& \text { It ios IPMMC } \\
& \text { a terminal } \\
& \text { side the box. }
\end{aligned}
$$

(in)

(b) Force carcycing cotwen two curevent

(c) force bet current carvery ing coil and soft Irene

Resulting differennee betwien the He asured and true Q befwienthe
in Erecore $=Q_{\text {meas }}-Q_{\text {inue }}$

$$
\begin{aligned}
& \text { Erecore }=Q_{\text {meas }}-Q_{\text {True }} \\
& \% \text { Ereror }=\frac{Q_{\text {meas }}-Q_{\text {true }}}{Q_{\text {true }}} \times 200 \%
\end{aligned}
$$

erecore in a-measurement
17 This due to 2 erreor sources.
(1) Inserction Resectance (r)
(2) C_{d}

1 The Q-rioltmetere is also known \% as ckt - Q meter.
ELECTRICAL MEASUREOENT:
Mehani\&m fors: preoducing control Forcle:- (Tc):-

Spreing 2 types.
(2) Helical
(1) spanerical spring
(2) spriong.
vgenerally we use spherical spring.
"phospore bronze"

$$
T_{c}=k_{c} \cdot \theta
$$

$K_{c}=$ spring constant. Trese materifor arve useg to made? pring.
Kc unct:

$$
\begin{aligned}
\text { ing constar } & =\frac{N \cdot m}{\text { degrue }} \operatorname{corg}{ }^{\prime} \\
& =\frac{N \cdot m}{\text { Radian }}
\end{aligned}
$$

Advantages:-
(1) Leineare $R e n^{n}$. $\left[\pi_{c} \propto \theta\right]$
(23) Thespring control onstrumenty we can use in both horerzontally and vertically.
Dexadrantage:-
(1) As the age passes the springs may luose elasto city property.
(ii) Due to increape in temperatora, \# siofries of spring \downarrow $\Rightarrow T_{C} \downarrow \Rightarrow T_{d} \uparrow \Rightarrow \theta \uparrow \Rightarrow$ Rearing
(2) Gravity ontrol: atelve (1) Noageing effeet. (2) temperature errore.

wi (Balance. - weight.)
${ }_{\nu} \operatorname{l}^{\uparrow} \quad \alpha \hat{T}^{\uparrow} d$
Here

$$
T C^{\alpha} \alpha \sin \theta
$$

prowew back: (1) Non Lineare Rel's shex. $^{\prime}$ (ii)The"s instrevment can beuced Only in veritilal mode. not cin Goriizontal Reln.
mehsenilem for preoducing pamping Force \dot{o}_{\sim}^{\sim} cpeed control wehave Rased on cpered dampongs.
3 typeq of dans.

- genierally we use a listle bit less than under daxifing system.

(1) Aer friction pamping:-

(2) Fluid freiction Damping:fust Replaie fluerd ensfead of Aire.
flueid damping is more eofective cerver reating dampoing somparer to ain frecietion dampeing. sienlec fluiy has the properity of viscoscty. But generally we U0
Anseret. Aialuriction damíering but not flvic| fruction damping.
$B C z$, Requlare mee ontance
in fuid freiction damping. fluid may come to (outside.

3) Eddy curereent Damping:
frddy \rangle Fluod \rangle Air
onder of EDVRehive nese

$$
\text { FAdy }>\text { Acire fivid }
$$

order of prefercener (or) ordea of usen where peremanent magnet:
 there tre damping of
\Rightarrow If Elcetromagnet avcelabe inside the meter then aire. friction damping is used.

H Here I causes force, F causes Td, fo fpünde rotates and Al disc rotates. It cuts continuous magnetic ines. and E.mif. is induced on Al disc. SO $2=V / R \quad$ o $\%$ produce of.
 - Effect opposer cause. coupe $=$ spindle Rotation.
so spindle rotation deciare. 2 is called eddy current. Eddy current we can not collect.
primace f magnet gives corcd. 80 gives constent
 anit varciabie mago mognet gives variabre magysing fireld io bemyoing we $c^{c^{\circ} l l} g e \&+$
phanc Instrument o:

$$
F=B I L \cdot \sin \theta
$$

$\quad \operatorname{copper} \operatorname{coi} /$ (or) copper winding.
$F=B I \cdot L \cdot \sin \theta$
4 when I frowi thenge $\quad \mathcal{A}^{\prime}$ Then iot passes through copper. $\cos ^{\circ} 1$, SOO Geforce is createy die to cument carry..ng cont

PMMC (d'Arsonval instrument):-principle:- It works on Electromagnetic effects of current.
"when a current carrying conductor is placed in a magnetic field, gt \& acted upon by a force which tends to move it one side and out of the field?"

Deflection Toredque
$T_{d}=$ force $X \perp$ distance

Advantages:-
(1) Low power consumption:
(2) possess high toreque/weight patio..
(3) No hysteresis Loss.
(4) Effective and Efficient Eddy current damping.
Dis.advantayys.
(1) cannot be used for AC measureenent:
(2) Costlier as compare to moving iron Instrument.
(3) Friction q temperature might introduce
(1) Some erceores.
(4) Ageing due to control spring, permanent

DC Instrument: Here Deflection- α or V D) Measurement can be done.

AC Instrument:- This ins.revment utilises Electromagnetic Induced ovichent for theireoperation. AC measurement can be done.

Ex:- Induction instrument.
Absolute instrument = It gives the quantity to be measured in terms of instrum ont constant and its deflection. Ex:- Tangent Galvanoine ter.
sec
secondary Instrument F These Instrument. are required to be calibrated by comparesion with either an absolute (or) sectndarey instrument already calibrated.

$$
\begin{aligned}
& \rightarrow \text { Indicating instrument. } \\
& \rightarrow \text { recording } \quad \text { on } \\
& \rightarrow \text { Integrate } \quad 0)
\end{aligned}
$$

Moving Iron Instrument:-
\rightarrow These are cheap. \rightarrow simple in construction.
\Leftrightarrow They are accurate at fixed pocvere supply Frequency. $\Rightarrow I t$ can be used for measure. ment of $b D$ th $A C$ and $D C$.
Types: (1) Attraction Type Moving Iron instrument. (2) Repulsion Type. Moving Iron instrument:
(1) Attraction Type Moving Iron êstrunent:-principle:- when a soft iron piece is placed in a magnetic field of a current candying coil, it'is attracted towards the center of coil. soft ir on piece exhibit minimum resistance of force. towards the center of coil.

work king:-
\rightarrow when instrument is connected to the echt, the operating current flows through stationary coil. operating current is the current which we will measure by the instrument by applying voltage.
\rightarrow A magnetic field is setup and soft iron piece es magnetised which is attracted towanceds the center of coil.
\rightarrow Thus, the pointer attached to the spindle is deflected over the calibrated scale.

$\rightarrow T_{d}$ depends on weights Iron piece.
$F($ force $) \propto \mathrm{mH}$.
$m \rightarrow$ pole strength of soft irendisc $\mathrm{H} \rightarrow$ Field strength produced by
coil.
Again $m \alpha H \Rightarrow F \alpha H^{2}$
Again $H \alpha I$ so F. $1 I^{2}$
Td $\propto F \Rightarrow T_{d} \alpha I^{2}$, we know Tc, $\alpha \theta$ $T_{d}=T_{c}$ when pointer stops.
$\Rightarrow \theta \alpha I^{2} \Rightarrow$ Deflection α square of current.
(2) Repulsion Type MoVing Iron instrument:-

PrincIpLE:- Repulsive force act when two similarly magnetised Iron pieces are placed together.
working:- when the instrument is connected to the circuit, the operating current flows through the coil.
\rightarrow A magnetic bield field is set up along the axis of coil.
\rightarrow The field magnetises both the tran pieces. similarly (same polarities.)
\rightarrow A Force of Repulsion act between the two, therefore movable piece move

- away from the fixed piece.
\rightarrow Thus, pointer attached to the
- spindle deflects over the calibrated scale.
Deflecting Torque:- It depends upon Repulsive forces between similarly magnetised iron pieces.
$H \rightarrow$ Field strength produced by coil $m_{1} \rightarrow$ pole strength at fixed Iron. $m_{2} \rightarrow 11$ of moving 1 Ion.

$$
\begin{aligned}
& m_{1} \alpha H, m_{2} \alpha H \\
& F \alpha m_{1} m_{2} \Rightarrow F \alpha H 2, H \alpha I \\
\Rightarrow & F \propto I^{2}, T_{d} \alpha f \Rightarrow T_{d} \alpha I^{2}
\end{aligned}
$$

we know $T_{c} \alpha \theta, \quad T_{d}=T_{c}, \theta \alpha I^{2}$
(2) Repulsion Type MI instrument:-Diagram:-

Demerits:-
(1) Not very sensitive.
(2) can not be calibrated with a high degree of precision with dc on account of effect of Hysteresis in Iron Rods.
(3) power consumption is high.

Torque Equation of Moving Iron Instrument :The force (f) pulling the from disc towards the magnetic field of the coil depends upon:-
(i) The strength of the magnetic field (H) produced by the coil and
(ii) The pole strength (m) developed by the disc,
which which is also propotional to H ire.
$F \propto M H$.
Deflecting Torque Td $\alpha F \alpha H^{2}$
If relative permeability of material of disc assumed to be constant, then
$H \propto 1$ (orel) Td $\propto I^{2}$
Now, fore spring control, the controlling torque of spring Tc $\propto \theta$ (Angle of deflection of disc)
In steady state of detection of the disc, we have Deflecting, torque, $T_{\alpha}=$ controlling
Torque, Tc. (iii)
Fremes 2 (1), (ii) \& (iii), we get $\theta \propto x^{2}$

It shows that the deflection in chron disc is proportional to the square of the rms value of operating curcicent.
sensitivity: It is the ratio of turechange in out put af the instrument to a change of input (or) measured quantity. The sensitivity of an instrument should be high.

$$
\begin{aligned}
& \text { high. } \\
& \text { sensitivity } \equiv \frac{\text { change in output }}{\text { change in input }} \\
& \text { racy: It is the closeness wit }
\end{aligned}
$$

Accuracy:= It is the closeness with which aninstreument reading approach est the true value of the quantity being. measured. The measured quantity may be different from the trove quartet due to effects of temperature, humidity
precision: the precision:- The term 'precise' means clearly (ore) shareply defined. It is the measure of the reproducibility of the measrements boo a given fixed value of a quantity:
Resolution: It is the smallest change in a measurement variable to which an instrument will respond is called Resolution.

AC Voltmeter with Rectifier and Amplifier e Combination:- [3rd sem. EMI; AC voltmeteri.] construction:-

working:- when the $A C$ signal (voltage) is applied to an AC amplifier, it is amplified and this amplified signal is fed to the rectifier circuit. The Rectifier converts $A C$ in to the pulsating $D C$. The pulsating $D C$ is passed through the filter ckt. where the pulsating $D C$ is converted in to constant $D C$. Then it is again amplified by a DC AMPlifier and then recieved by PMMC meter. The scale of meter is calibrated to give R.M.S. value.

AMI ORD SEM.
DIGITAL FREQUENCY METER:
construction:-

working operation:- The unknown signal whose frequency is to be measured is fed to a schmett Trigger. The signal may be amplified through an amplifier betore being applied to schmitt. Trigger. In schmidt trigger the signal is converted in to a square, wave with very fast rise and fall times. Thus the output of a schmitt Trigger is a train of pulses, one pulse for each cycle of the signal. The output pulses of the schmitt trigger are fed to start step Gate. When the Gate is pen, these pulses pass through the Gate and fed to an electronic cornice that countersothe frequency of input signal and that Displayed Display.
The frequency of the unknown signal is given by $f=\frac{n}{t}$, where
$f=$ frequency of unknown signal.
$N=N$ or count displayed by counter $t=$ Time interval between the stares stop of the gater

$$
+x-x-x=
$$

DIGITAL MULTIMETER:-
\rightarrow It is an instrument which measures A.C. and D.C. Voltages, A.C. and D.C. currents and resistances over a wide range.
multimeter

Digital It indicates that a It indicates that the device has a digital single device can be (ore) LCD output. used fore multipurpose measurements.
parts of Digital Multimeter:-
(1) Display screen:- It has illuminated display screen for better Visualization. five digits one fore sign value
(2) Selection Knob: multimeter is used fore several measurements like voltage, current and resistance. The selection knob allows the user to select the different measurements.
(3) port:- Two ports
(MA)(v) port com port
$\begin{array}{ll}\text { Red probe } & B l a c k \text { probe } \\ \text { Live } & \text { te } \mathrm{CS}\end{array}$
It is fore tie \quad (ore) Gre oud terminal.
terminal \quad (one terminal
in 10 A port (current port can measure Large currents.)
BLOCK DIAGRAM OF DIGITAL MULTIMETER:-
$\left.\frac{\text { constant }}{\text { current }} \begin{array}{c}\text { sourece }\end{array}\right]$

147he current is converted in to Voltage by passing it through low shunt res instance.
\leftrightarrow The A.C. quantities are converted into D.C. quantities by employing Various rectificit and filtering. circuits.
\Rightarrow The resistance measurements consists of a low current source that is applied across an unknown resistance:
Various Applications:-
(1) Measurement of voltage:- fore measurement of arc. Portage, the input Voltage cis fed through a calibrated, compensated attynuatore, to a precision foll wave rectifier Followed by a ripple reduction filter. (Analog to Digital converetere is alsoused.)
(2) Measurement of current:- for eurreentmeasurepent, the drop across on internal calibrated shunt is measured directly by the ADC in the ic dice current modes and after acc. to d.c. conversion in the ec $a \cdot c$. current mode". Resistance Voltage Drop $I=V / R$
(3) Measurement of Resistance: D $\dot{c} q$ ital multimeter measures the voltage across the externally comected resistance, resulting from a current forced through it from a calibrated current source, $\quad K=I R . s R=V / I$

$$
\text { won } \quad, \quad \times-\times
$$

SIGNAL GENERATOR:- [CHAPTER-7].
\rightarrow It is an instrument which provides different output waveforms including sine wave, Trianqupare wave, pulse Train and an amplitude Modulated wa be form.
\Rightarrow It provides variety of different signals for testing various electronic circuits at low powers.
Requirements of a Signal Genereatore:-
(1). The output frequency. of signal generator should be verey stable.
(2) The amplitude of output signal should be controllable from. low values to relatively large values.
(3) The amplitude should be stable. The harmonic contents should be as low as possible. The output should be distortion frees.
(4) It should provide Low spurious output.

Signal Generators: - It generates: fixed frequency sine wave whose output can be frequency (ore) Amplitude modulated by another signal. M Frequency range overewhich instruments used 0.001 HZ to 50 GHz .
\Leftrightarrow Frequency modulation in signal Generator is - achieved by. Varying the voltage across a Variable capacitance diode in the tuning correcuit of the oscillator.
\rightarrow Low output distortion for modulation depth below 1% of the career frequency.
Lay More output Distortion.
\rightarrow Amplitude modulation in signal Genereatore is vara done by varying the supply voltage to the oscillatore. up to about 50% of value this Amplitude modulation is done. Amplitude Modulation also give phase modulation.
BLOCK DIAGRAM:-

Envelope Feedback:- \rightarrow feedback can modulation
reduce the output Distortion
\rightarrow Detecting the output to obtain the Modulation envelope.
\rightarrow comparing this with the amplitude modulation input and then amplifying and feeding back the difference as the modulation signal.

L Atcinuatore is used to give low level output signal and output Amplifier is used to Amplify if the signal is weak.
Heterodyne principle: it is used to give continuously variable, wide frequency range output from a single instrument signal outplity is good. Stability of frequency is very poorer. uitput frequency is f2-f1 which is considerable amount of noise and spurious signals.

Multiplier e and Divider Techniques:- 4
Multiplier Generator:- put put from the fixed jor g
$\frac{\text { multiplier aeneracilatore is fed through a series }}{\text { frequency }}$ of tuned multiplier.
The output from each stage is fed to a tuned Filtere, which selects the high frequency output'
\rightarrow frequency modulation is applied to master
\rightarrow Amplitude modulation is done by dec. supply to the last multiplier stage.

lyoutput from the divider stages are square waves which needed to be filtered to produce sine waves.

D1.5TORTION: The process of changing in shape and size of the signal is DistoreLion.
Example:- original signal

Distorted signal \rightarrow Now
\rightarrow collecting
DATA ACQUISITION SYSTEM:-
\Leftrightarrow It is an information system that collects, stores and distributes information.
\leftrightarrow It is used in industrial and commercial electronics and envireanmental and scientific equipment to capture electrical signals (ore) environmental conditions on a computer device.
\rightarrow It includes different tools and technologies that are designed to accumulate data.
\rightarrow Data Acquisition system consists of :(i) Sense (ii) signal conditioning
(iii) Data
conversion (iv) Data processing (V) multiplexing.
(vi) Data Handling. (vii) Associated Transmission, storage and Display Devices. BLOCK DAGGRAM Of DAS:-

TRANSDUCER: L It is used to convert the physcal quantity coming from the field in to electrical signals. (ore) it is used to measure directly the electrical quantities. (ike voltage, current, frequency, Resistance.)

SIGNAL CONDITIONING UNIT:-
\rightarrow output signals of treansduceres are verey weak sägnais which can not be used fore fvethere processing.
$\therefore \quad \rightarrow$ To make the signals string, various signal conditioners ale used.

I \rightarrow Different Types are e
MULTIPLEXER:-l \rightarrow It accept Multiple analog inputs and provide a single output signal according to the requirements.
A/D converter:- $\rightarrow 1$ converts analog Data
 transmission and Digital display, storage is easy.
RECORDERS AND DISPLAY DEVICES
Data is displayed in suitable form in
\rightarrow Data is displayed tin suit input signals.
order to motor the inf are oscilloscope example of Display. Devices are oscilloscopes, Numerical displays panel meters.
\rightarrow Data can be either e permanently (ore) Temporal stored (or) recorded, Example:- optical Recorders, ultra violet Recoreders, styles and ink recorederts.
OBJECTIVES OF DATA ACQUISITION SYSTEM:-
(1) The system must acquire the ne cessarey data, at correct speed.
(2) Use of all data efficiently to inform the operator about the state of the input.
(3) It must monitor e the complete plant operation tomaintain on-line optimum and safe operations.
(4) It must be able to summarize, and store data for diagnosis of operation andrecord purpose.
(5) It must be flexible arid capable of being expanded for future requirements.
(6) It must be reliable and not have a down time greater than 0.1%.
(7) It must provide an effective human communication. System:
((1) Applications uses of DAS system:-
\rightarrow Analog DAS is used. when wide frequency width is required (orel when lower accuracies. can be tolerated.
Digital DAS is used when physical quantity being. mon itoreed has nafurtow bandwidth and also when high accuracy and low per channel cost is required.

LoDigitalsparee more, complex than Analog h both in terms of instrumentation involved and the Volume and complexity of data they canhandle.
is These are used in industrial Area (like plants forncollecting Data), scientific Areas (Aerospace, Biomedical, telemetry for colleching the Data.)

FUNCTION GENERATOR:-
\rightarrow A function Generator is a signal source that has the capability to proodvee different types of waveform as its output signals.
\rightarrow most common output waveforms are:Sine wave
 Triangular wave

Square waves

sawtooth waves

\rightarrow The frequencies of these waveforms may be adjusted from a fraction of hertz to several hundred Kilo Hertz. "
\rightarrow function Generators ane versatile instruments as each of the waveforms they generate is suitable for a different group of applications.
\therefore The various outputs of the generator maybe available at the same time.
example:- (1) square wave + sawtooth wave
square wave + sawtooth \downarrow
\downarrow
\downarrow Linearity measurements the horizontal deflection in an Audio system. Amplifier e of an oscillasco.
(2) Triangular wave + sine wave.

If the zero crossing of both the waves arete made to occure at same time, alinsanly Varying waveform is a vailable:

1 y function Generator has the capability of phase locking 10 an external signal source.
Example:- (1) one function Generation Maybe used to phase LOCK a second function generator and the two output signals can be displaced in phase by one adjustable amount.
(2) One function generator may be phase locked to a harmonic of the sine wave of another Function beneratore.

By adjustment of the phase and amplitude of the harmonics almost any waveform may be produced.
(3) The function generator can also be phase locked to an accurate frequency standard and all its outport waveforms will have the same frequency, stability and Accurcacy BLOCK DIAGRAM OF FUNCTION GENERATOR :-

\rightarrow The frequency is controlled by the magnitude of the current t that drives the integrator.
\rightarrow The 3 Different waveforms sinusoidal, Triangulate, square wavers are generated in the frequency range of 0.01 Hz to 100 KHz .
(1.) Frequency control Networks

Governed by the frequency dial on the front panel of the instrument.
(ort) Governed by an externally
applied control applied control voltage.

LT The frequency control Voltage governs/ regulates the two current sources.
upperecurerent Lower current source source.
\rightarrow The upper current. source supplies a constant current to the intiegratore whose output voltage increases linearly with time.

$$
e_{o_{V \cdot t}}=\frac{-1}{c} S_{i} \cdot d t
$$

\rightarrow A Increase(1)or Decrease (\downarrow) in current supplied by upper current source increases (\uparrow) or decreases (\downarrow) the slope of the output voltage.
\Rightarrow The sower current source supplies Reverse current to the integrator. Due to Reverse current output voltage decreases linearly with time.

\rightarrow The comparator e output provides a square wave of the same frequency as the output voltage.
\rightarrow The resistance Diode network changes the slope of the triangular wave as its amplitude changes and produces a sinusoidal nave with less than 1% distortion.

$\rightarrow I t$ is used in Laboratory and repair ing box. multimeter means mary measurement can be done by single device.
\rightarrow Analog multimeter measures Voltage, current, Resistances of Various ranges.
\rightarrow multimeter Digital (digital D/P displayed at LED, $\begin{aligned} & \text { LED.) }\end{aligned}$ Analog. (Analog opP displayed by pointer on scale calibration.)
4 Both $D C$ and $A C$ Measurements can be done.
4 rivltimeter consists of Voltmeter, Ammeter and ohmmeter.
working principle and construction of
Analog multimeter:-
\rightarrow It is basically a PMMC galvanometer. It has Moving coil that moves in Magnetic field of permanent magnet. Moving coil is wound on an Aluminium former. pointer is attachey with Moving coil. pointer Moves on a gradeted scale.

\rightarrow Two spiral springs are attached to the coil assembly (at the top and bottom) to provide controlling Torque. When input is removed the pointer should return to initial position inthe calibrated scale. And it is done by controlling Torque.
\rightarrow Galvanometer is converted into a voltmeter, Ammeter and ohmmeter with the help of Suitable circuits for measuring voltage, current and Resistance.
Voltage Measurement by Analog multimeter:-
\rightarrow High voltages are measured by connecting high resistances in series with Garvanometer. Similarly cow voltages are measured by connecting how resistances in series with Galvanometer. Go According to ranges of voltage measured, the resistance reangesvaried.

 R_{1} and R_{2} with Galvanometer. similarly soon.
\rightarrow series Resistance is also called multipliers. \rightarrow Analog multimeter has two leads.onped Lead (It is connected with the terminal), (2) Black Lead (It is connected with -ve ort Ground Terminal.)
\rightarrow one lead is connected in Voltage range socket. other lead is connected to common socket. This is for $D C$ voltage measurement.
\rightarrow for $A C$ voltage measurement we have to use full wave Rectifier.

$\rightarrow A C$ Voltage Range is selected by selector switch.
\rightarrow Analog Multimeter is connected in parallel with the portion of the circuit across which Voltage is to be measured.
current measurement by Analog Multimeter:-
LTFOR current measurement, small resistance is connected in parallel with Galvanometer. to measure large current valves.

\rightarrow Range is selected by varying the value of shins Resistance.
\rightarrow multimeter is connected in series, with the branch in which current is to be measured.
\rightarrow For $A C$ current measurement we will use Rectifier, Rectifier converts $A C$ valve to $D C$ valve and itheneasurement is done.
Resistance measurement by analog multimeter:\rightarrow Galvanometer is converted to ohmietere fore resistance measurement, for this conversion Internal battery is connected in serieswith Galvanometer; Fixed Resistance and Adjustment Resistance.
\rightarrow red Test lead is connected to the chi whose peristance is to be measured.
$\rightarrow R_{1}, R_{2}$ are fixed resistances and re is Adjust-
able resistance. zeroondivistable

Black Test
Lead
affixed Resistances limit the current with in the desired range. variable, resistance is used for zero adjustment in the pointer. scale is calibrated interns of resistance.
sensitivity of multimeter: :-
resistance offered per unit Volt of full scale deflection by multimeter is called sensiticity.
\rightarrow For High sensitivity high internal resistance is used. circuit Draws negligible current. so No current LPSS occurs and correct measurements can be done.
\rightarrow Sensitivity of Analog multimeter e ranges from $8 \frac{\mathrm{kl}}{\mathrm{V}}$ to $\frac{20 \mathrm{~K}-\Omega}{\gamma}$.

Advantages of Analog multimeter e:\rightarrow sudden change in signal can be detected effectively Dune to High sensitivity the small current can be detected by Analogmultimeter.
\Rightarrow All types of measurements can be done by single meter.
\rightarrow In crease (ore) Decrease in signal levels can be easily observed.
DisAdvantages of Analog multimeter:-
\rightarrow Analog multimeter ane bulky, costly, care has to be taken. Error can occur due to observer.
\rightarrow point ere movement is is slow i L vulnerable to shock and Vibriationil then encorent
$\rightarrow A$ an cures un reading. This instrument is inaccurate due to effect of earth magnetic field.

Digétal Voltmetere [ËLECTRONILC MEASUREMENT.]
\rightarrow DVm is Voltage sensetive device. In DYM Resppnsible quantity is voltage.

$\leftarrow I /$ Pattenvator \rightarrow

47447 converts $B C D$ to 7 segment display.
$\rightarrow 3$ Decade counters are connected in series to count ${ }_{\text {h }}^{\text {Maxima }} 1000$ number of pulses that counts
Decade. counter
\Rightarrow Decade counter that is equivalent to unknown input value and that unknown input signal is displayed, by 7 segment Display indigeital format.
4 Decimal point selector selects at which place Decimal point is placed.
Advantages of Digital voltmeter:- (i) Readout of $D V M$ is easy as it eliminates observational erreores in measurement committed by operators.
(Hi) Erereres on account of parallax and approx-
mation is eliminated.
(li) output can be fed to memory device fore stria and future computations. (iv versatile, accurate, cheap, compact .V Low power requirements.
(vi) portability increased.

Types of Digital Voltmeters:- Preamp. Type digital voltmeter (2) Integrating Type voltmeter (3) potentiometric type voltmeter e (4) successive Approxximation type $D V M$. 5 continuous balance

Type $D V M$.
$\xrightarrow{\text { Analog contains a dial with }} \frac{\text { voltmeter }}{\text { wit }}$ a needle moving over e a calibrated scale. $u \Rightarrow$ wrong scale (ort) wrong reacting can occurs.
\rightarrow Interior resolution and accuracy.
Lu It can not me ar sure negative voltage.
\rightarrow Roughly we can not use carefully we use.

$$
\operatorname{Digital~}_{\rightarrow \text { voltmeter e }}^{\text {measure voltage }}
$$

directly by giving the discreeter numorica/outpy
\rightarrow a lo doubt in reading.
Lr superior resolution and accuracy.
\rightarrow Negative voltage is correctly indicated by Digital voltmeter. \rightarrow we can use it roughly.

G G.M.I.I RAYAGMII
Name of Exammation \qquad Date \qquad Sitting • 1 ic.... Read. No. \qquad
Sub. Code \& Name \qquad
Erin \& Branch \qquad
in offaditionals used \qquad

TRANSDUCER AND ITS CLASSIFICATION:-
Transducer is a device which converts one form of Energy in to another form of Energy.
CLASSIFICATIONS:- (1) primary and secondary Transducer (2) Active and passive Transducer.
(3) Analog and Digital Transducer.
(4) As Transducer (Electrical Transducer) and Inverse Transducer.
\rightarrow primary Transducer is used at firststage where we want to measure the input quantity. secondary Transducer is used at second stage.
Example:- we give pressure as measuring quantity to Boureden Tube (primary Transdicer.) Output of burden Tube is size change ore Displacement That value is given as input to LVDT (secondary Transducer) at second stage.
\rightarrow Active Transducer does not need any external power supply.
Ex:- solar plate has photovoltaic cells that converts light signal to electrical signal comes under Active Transducer. passive Transducer needs external power supply for its operation. Ex:- Bridge circuit measures unknown resistance but it needs extra power supply for its operation.
\rightarrow Analog Transducer converts physical signal to output signal that is inform of
scale calibration scale calibration.
Ex:- pressure gauge displays the physical signal at pointer.

Digital Transducer gives output Signal in digital form.

Ex:- Digital speedometer nike out pot in digital form and it's input quantity is wheel potation.
\rightarrow Electrical Transducer converts any physical quantity (ore) Non electrical quantity in to Electrical signal as output. EX:- LVDT \rightarrow It converts Displacement (Physical signal) to Electrical signal as output Voltage.
electrical Inverse Transolucere converts $m_{x \rightarrow x}$ Signal to Nonelectrical signal.

Date \qquad Siting - 1 sid: :
Regard No \qquad
Et. Code 8 Name
En \& Trance!
in Cl hedinónats used \qquad
RESISTANCE THERMOMETER RT-
$\xrightarrow[I t]{\longrightarrow}$ is also known as Resistance Temperature Deterstore (RTD). It is used fore measurement of Temperature.
principle:- The resistance of a conductor changes. when the temperature e is changed.
\rightarrow The variation of resistance R with temperature $T\left(0_{K}\right)$ can be represented by $R=R_{0^{\prime}}\left(1+\alpha_{1} \cdot T+\alpha_{2} \cdot T^{2}+\cdots+\alpha_{n} \cdot T^{n}+\cdots\right)$
$R=$ Resistance of Metal, Ron $=$ Resistance at temperature $T=0$ Kelvin $\alpha_{1}, \alpha_{2}, \alpha_{3}, \cdots \alpha_{n}=$ constants
\rightarrow Resistance Thermometer uses the change in electrical resistance. of conductors to doteremine the temperatures.
CONSTRUCTION:- \rightarrow positive temperature coedre cent materials are e used.
\rightarrow platinum is used for construction. It can withstand: at high temperature having excellent stability. It is less susceptible tocontamination.
Requirements of a conductor material to be used in RTD:-
(1) Change in resistance of material per . unit change in temperature should be as large as possible.
(2) Material should have high value of resisievity so that minimum volume of material is used.
(3) Resistance of materials should have a continuous and stable relationship with temperature.

\rightarrow Gold and silver can also be used fore RTD construction. They have low resistivities.
*Tungsten can also beused. It has. high resistivity and intis used at high
temperature applications.
\mapsto copper can also be used:
\rightarrow Mostly we use platinum, nickel and alloys of $n i c k e l$ fore construction of RTD.
\rightarrow platinum is the best choice fore construction of RTD because platinum has $100-2$ at $\therefore 0^{\circ} \mathrm{C}$ with a resistance temperature coefficient of $0.00385 / \mathrm{s}$

Scanned by CamScanner

Here 2 Approximations (1) Lineare Appreoximotion which is used fore short range of temperature. (2) Quadratic Approximation used fore large range of temperatures.
In Linear Approximation

$$
R_{\theta}=R_{\theta_{0}}\left(1+\alpha \theta_{0} \cdot \Delta \theta\right) \text { with } \theta_{1}<\theta_{0}<\theta_{2}
$$

$R_{\theta}=$ Approximate resistance at $\theta^{\circ} \mathrm{C}$.
$R_{\theta_{0}}=$ Approximate resistance at $\theta_{0}^{\circ} \mathrm{C}$.
$\Delta \theta=\theta-\theta_{0}=$ change in Temperature
Here Linear Relationship is maintained betwen the Resistance and Temperate fore short range of temperatures.
In quadratic Approximation we have both Linear part and quadratic part also.

$$
R_{\theta}=R_{\theta 0}\left[1+\alpha_{1} \cdot \Delta \theta+\alpha_{2} \cdot(\Delta \theta)^{2}\right]
$$

ELECTRICAL TRANSDUCER:-
\rightarrow It converts Mechanical quantity to electrical quantity. It's output is electrical signal.
\rightarrow Mechanical Transducer converts Any signal to Displacement.
\rightarrow Electrical Transducer has more advantejej \rightarrow In Electrical Transducer frictionless available. operation available.
\rightarrow Electrical Transducer output can be transferred to more distance.
\qquad Siting - $15:$
\qquad
Sub. Code \& Name \qquad
Erne: \& Branch \qquad
$\because n$ ci f Auditionalsused \qquad
THERMISTOR:-
 PF. current.
(Thermal + Resistor)
\rightarrow Thermistor is a special type of resistor whose resistance changes with the change in Temperature.
\rightarrow The conductor imp which by increasing tempcreature, Resistance decreases that has negative temperature coefficient.
\rightarrow But Most of the conductor has positive temperature coefficicient ie. it in in e increa temperature thenoresistance increases.
\rightarrow Thermistor have a negative temperature coefficient of resistance.
$\$ 1^{\circ} 4$ rise in Temperature. 5% decrease in res stance.
\rightarrow Therenistores are used for precision temperature measurements, control and compensation:
\Leftrightarrow Thermistor temperature measurement range is $-60^{\circ} \mathrm{C}$ to $15^{\circ} \mathrm{C}$. Resistance range of thermistor is 0.5Ω to 0.75 Mr .
\rightarrow Thermistors are highly sensitive but have a non-linear characteristics of resistance versus temperature.
construction:-
\rightarrow It consists metals like manganese, nickel, cobalt, coppers iron and uranium.
\rightarrow Thermistors are available in different shapes and sizes like beads, rods, discs.

(i) Bead

leads (iii) DisC

(ii) probe

4 The Thermistor which are Bead in shape they are smallest in size having diameter
of 0.015 mm to 1.25 mm .
L. Glass probes Types of Thermistor having diameter of 2.5 mm and length varies freon 6 mm to 50 mm .
\rightarrow Disc Type of Thermistor made by pressing material under high pressu They are sized in to cylindrical shapes with diameter e 2.5 mm to 25 mm .
characteristics of Therme tones:-
(1) Resistance.. Temperature. (2) Voltage-curat characteristics (3) current-Time characteri stich.
characteristic.
\& 7 Kransstat

$$
\therefore \text { mort }
$$

singed
perse.

i) The mathematical expression for the relation ship between the resistance. of a thermistor and temperature is

$$
\begin{aligned}
R_{T_{1}}= & R T_{2} \exp \left[\beta\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)\right] \\
R_{T_{1}}= & R e s i s t a n c e ~ o f ~ T h e r m i s t o r ~ a t ~ \\
& \text { temperature } T_{1}
\end{aligned}
$$

 temperature 7_{2} i
$\beta=$
\quad constant depending upon the mater
of thermistor. of thermistor. it's Range is al 3500 to 4500 .
(2) Voltage-ivrrent characteristics:-

current \rightarrow
(A)
\triangle The voltage drop of a thermistor increases with increasing curerent until it reaches a peak
value. value.
\rightarrow Abtere peak value the voltage drop. decreases with increase in curement. In this reange thermistor shows the negative resistance chareactereistics.
(3) Curerent-Time characteristics:-
\rightarrow The time delay current \uparrow. to reach maximum: current is a function of applied Voltage.
\rightarrow when the heating effect 30° occurs in a theremistort, ${ }^{20}$ a certain finite time is required for the therms 1 to heat and the current Ester to build up to a maximum steady state value.
AppLiCATIONS:-(1) Measurement of Temperature.

Temperature (\uparrow).
\downarrow
Resistance(\downarrow) \leftrightarrow Current (\downarrow)

(2) control of Temperatures: - Thermistor e ane used along with. a relay.
(3) Temperature compensation?. (4) Me asurement of power at high frequencies (5) Measurement of theremal conductivity. (6) measurement of Level, flow, pres ssuree in Liquids (7) Vacuum maser repent also (8)providing Time delay. ADVANITAGES:-(1) compact, rugged and in expensive. (2) They are having good stability, highly sensitive. (3) Response time is fast.(annot affected by stray magnetic field and electric fields.
DISADVANITAGES:- (1) They are having nonLinear e characteristic Resistance with Tempering

THERMOCOUPLE TRANSDUCER:-
\rightarrow It is a device which is used for the meansurcement of temperature variations. It is also act as Active Transducers. It converts non electrical quantity temperetire to electrical quantity voltage. It is also Temperature Transducer. principle of operation :-
\rightarrow Thermocouple is composed of a least two metals joined together e to form two junctions. There are junctions Hot junction and cold junction. onejunction is connected to unknown body whose temperature we have to measure. Another junction is at Reference and known temperature we conation first junction is Hotjunction/measuring junction. second junction is Refereence/cold junction.
(1) Seebeck effect:-
\rightarrow This effect states that when two different (ort)unicke metals are e joined together at two junctions, an electromotive Force (emf) is generated at the two junctions.
\rightarrow The amount of emf generated is different fore differerent combinations of the metals.

\rightarrow Here 2 emfs are generated at two junctions $\dot{e} e$. Hotjunction and cold junction.
(2) Pettier effect:-
\rightarrow when two dissimilar metals are joined together e to form two junctions, emf is generated within the circuit due to the different temperatures of the two junctions of the circuit.
4) In seebeck effect cause of generation of emf was not explained.
(3) Thomson effect:-
\rightarrow when two unlike metals are joined together to form two junctions, the potential axis within the circuit due to temperature gradient along the entire e length of the conductors within the circuit. WORKING:

\rightarrow Thermocouples measures the voltage generated between the two junctions.
\rightarrow The total emf flow in the circuit will depends on metal wires and teaperatire at two junctions.
\rightarrow The emf produced in the thermocouple is given by

$$
E=a \cdot(\Delta \theta)+b \cdot(\Delta \theta)^{2}
$$

$\Delta \theta=$ difference in temperature between the two junctions ($\left.{ }^{0} c\right)$.

$$
a, b=\text { constants }
$$

Generally $a \gg b$, so above equation is approximately $E=a \cdot \Delta \theta \Rightarrow \Delta \theta=\frac{E}{a}$
\rightarrow In thermocouple temperature measuring circuit, the emf set up is measured by sending a current through a moving coil instrument, the deflection being directly proportional to the emp.
\rightarrow The reference junction is usually at $0^{\circ} \mathrm{C}$.
\rightarrow Thermocouples measures up to $1400^{\circ} \mathrm{C}$.
\rightarrow combination of metals used for thermocouple should always produce a linear rise in emF.

$$
E_{0}=a \cdot \Delta \theta
$$

$b \rightarrow$ term \rightarrow neglected
\rightarrow Different combinations of metals are used to construct the thermocouple. Those metal combinations are
(i) Iron constantan (ii) copperetconstantan
(iii) chromes t constantan, (iv) chromelt

The materials that we use inthermocouple that depends on 2 factors. ie. (i) Kind of atmosphere. (ii) Temperature e range to be measure.
\rightarrow Thermocouples are Type of Active transdicer. They donot require any auxiliary source for their operation. Thermos. couple is also self generating Transducer.
ADVANTAGES:- (i) It follow the temperature changes with a small time-lag.
(ii) They are verey convenient for measuring the temperatures at one particular e point in a piece of apparatus.
DISADVANTAGES:- (1) It has power accuracy.
(iii) They should be protect against contamination to ensures long life.
(iii) They should be placed at remote places from measuring devices.

CAPACITIVE TRANSDUCERS:-
\longrightarrow It converts a Non electrical quantity in to an electrical quantity by means of changes in capacitance. Non electrical quantity may be force, displacement, pressure, flow, Level, Toreque etc. Electrical quantity may be Voltage ,
current.
\leftrightarrow The principle of operation of capacitive transducers is based on the equation of capacitance of a parallel prate capacitor.

$C=\frac{\epsilon \cdot A}{d}=\frac{\epsilon_{0} \cdot \epsilon_{r} \cdot A}{d}, \quad \epsilon=\begin{gathered}\text { permitivity of } \\ \text { the medium }=\epsilon_{0}\end{gathered}$ the medium $=\epsilon_{0} \cdot \epsilon_{n}$
$\epsilon_{r}=$ Relative permitivity of the medium.
$\epsilon_{0}=$ percmitivity of tree space $=8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}$
$A=$ over clapping area of plates.
$d=$ Distance between two plates.
\rightarrow The capacitive transducer work on the principle of change of capacitance which may bee caused by:-
(1) change in overelapping ane a, A.
(ii) change in distance a between the plates:
(iii) change in dielectric constant.

The above 3 changes can be done by displacement, force, pressure, Liquid level/flow.
\rightarrow The capacitance is measured with bridge circuits output impedance $X_{c}=\frac{1}{2 \pi f c}$
Advantages of capacitive Transducers:-
(1) They require extremely small forces to operate them and hence are e verey useful for use in small systems.
(2) They are extremely sensitive.
(3) They are having Good frequency response.
(4) They are having input impedance so less loading effect.
(5) A resolution of the order of $2.5 \times 10^{-3} \mathrm{~mm}$ can be obtained.
(6) The force requirements is small. 50 it require small power to operate them.
DISADVANITAGES:-(1) The metallic parts of the transducers must be insulated from each other in order to reduce the effects of stray capacitances.
(2) capacitive Trans ducere show non linear behaVioure on account of edge effects. Geared rings are used to eliminate this effect'
(3) output impedance is high on account of theine small capacitance value whish leads to loading effects:
(4) The cable connecting the transducer e to the measuring point is also a source of ervere.
APPLICATION/USES of CAPACITIVE TRANSDUCERS:-
(1) They can be used for measurements of both linear and angular displacements.
(2) capacitive Transducers can measure extremely small displacements down to the oredere of molecular displacements ie. $0.1 \times 10^{-6} \mathrm{~mm}$.
(3) They can be used for measurement of large displacements up to 30 m as in aeroplane altimeters.
(4) capacitive Transducers can be used to measure e the force and pressure. force and pressure e creates the displacements and Displacement creates change in capacitance.
(5) They can also be used as direct et pressure e transducers in all those cases where e the dielectric constant of a medium changes.
(6) They are used fore measurement of humidity in gases.
(7) They are used in conjunction with mechanical modifiers for measurement of Volume, density, liquid level, weight etc.
$\sqrt{\text { changes }}$
Dielectric constant
6 changes
capacitance
\qquad x -

LOAD CELL:-
$\leftrightarrows A$ Load cell is a transducer that is used to convert a force se in to electrical signal.

\rightarrow Here pneumatic hoad cell is the listrument instars which we use Air pressure.

Bread valve
Fip:preumatic cell
4 Here an air chamber is there in which air inlet and air outlet is available. we will measure the Load (or) pret source at the output:
\rightarrow Bread valve iscontriolling value which controls the air pressure.
\rightarrow A plate is available on Diaphragm on which we will apply the pressure.
\rightarrow A constant fire supply is maintained inside the chambers.
\Rightarrow When we apply Load (ore) pressure on Load plate the Diaphragm moves towards down ward movement. After that remaining
airt is removed from outlet chamber. Go output air (or) pressure we can measure by the measuring element inform \rightarrow output Air (ore) pressure e we are getting due to applied force (or) applied load.
 STRAIN GAUGE:-
$\Leftrightarrow 1 t$ is used For calculation of strain and associated stress.
\rightarrow Here Resistance changes as bothrength and diameter of the conductor changes. of strain Gauges are known as piezoresistive Ganges.
7 Types of strain Gauge's available,
(1) unbonded metal. (2) Bonded Metal wire.
(3) Bonded metal foil (4) Vaccum deposited thin metal film. (5) sputter deposited thin metal film. (6) Bonded semiconductor.
(7) Diffused metal
(9innonded Metal strain Gauge:SAUGE EACTOR: LE IS the ratio of per unit change in resistance is to per unit change in length.

$$
\varepsilon=\operatorname{strain}
$$

$$
G \cdot F=\frac{\Delta R / R}{\Delta L / L}=\frac{\Delta R R}{\mathcal{E}}, \quad=\frac{E=S t R}{L}
$$

WORKING: (1) distortion of wheatstone bridge due to tension.
(2) produces output voltage.
(2) BONDED WIRE STRAIN GAUGE:-
\rightarrow It consists of aGric of of fine resistance wire, of 0.025 mm in diameters.
4 Gauge factor is comparable.
\rightarrow size of this strain gauge varies according to different applicationstro 3 mm to 3 cm . m of Gauge factor. Resistance \&strain Gauge should have Low/ Tempenature that helps to erinore minimization of temperature.
\Rightarrow strain Gauge should not have any hysteresis effect in its response.
\rightarrow Linearity of al function should not be changed.

$$
\begin{aligned}
& \text { Stress }=\frac{\text { Force }}{\text { Area }} \\
& \text { Tension }=\frac{\text { Force }}{\text { unct Length }}
\end{aligned}
$$

PROXIMITY SENSOR:-
SENSOR: It is a device that can detect objects without touch.
TYPES of SENSOR:- (1) Inductive sensor.
(2) capacitive sensor. (3) Magnetic sensor.
(4) Photoelectric sensor. (5) Red switch.

Inductive proximity Sensory:- proximity means nearness, It is the device
that senses ore detects nearness object by using Magnetic effect. Inductive proximity
sensor senses the metal object only. It can work for both $A C$ and $D C$ supply. This sensor can sense up to 25 mm distance.
working pricinciple:- te works on the principle of faraday's Law. According to faraday's law induced emf

$$
e=-\frac{N}{-\frac{d \phi}{d r t}} \quad \text { where } \frac{d \phi}{d t}=\text { Rate of change }
$$

Transistor e iscomected to Three output wires (1) brown (it ane suppl),
(2) $\operatorname{Brack}(2 t$ is connected to Feedback circuit).
(3) Blue (it is connected to we supply.)
\rightarrow Let An object is present at a more distance to sensing face. By comecting tue and -re supply to the sensor then magnetic force Line is created. when object is far to magnetic force wine then oscillator's oscillation
amplitude is high. (Lake $\bigcup \bigcup j \cdots)$. But when the object comes near to magnetic force line then magnetic force Line is compressed and eddy current is created that eddy current alsoheats the object then oscillatoress oscillation amplitude is zero or decreased (like mum) So current is reduced and Trigger circuit will be on position. So, Transistor e also will be in on position. AFter that finally we will get the output. That output may be tue (ore) ave.
PHOTOELECTRIC SENSOR:- It is a light sensitive element that detects the object $\$$. It is available in many form's ie. AC, DC, Direct Reflection, Reflection with Reflector, Thru Bean, Adjustable operating. Distances, programmable output function, $D C$ NPNI/PNIP, Notable selectable AC rlo/nc selectable.
Direct Reflection (diffused) Type sensor: Here, a sensor is available infriont of this sensorein which both Transmatter and receiver available. when an object comes in between two sensors then the reflected ray/right returns to the sensor by bombarding with object then output is generated. ReFlection with Reflector (Retro-Reflective)

LyHere a sensor and a Reflector exist. Transmitter and peceivert remains at same sensor. wien object comes in between. them light output is generated..
Thru Beam Sensor: Here 2 different sensors are e available transmitter and receiver. When an abject comes in be tureen them then the light output
is generated. is generated.
CURRENT TRANSDUCER: It is a device which converts current to a propotional standard electrical signal. Basically it is Formed by 4 pants. (1) sensitive component (2) conversion component (3) conversion circuit (4) power circuit. workIng: The current goes in , senstire componentgives the electrical signal as output. Then a the signal will pass to conversion component which can convert the signal to grail current signal. Then it pass to conversion circuit which process the small current signal and provide industry standard Electrical signal (Generally ono 5 volt, 4 to 20 mA, 1S485). Then the out signal goes to Terminal equipment (such as Display, place, Alarm unit, Automation control etc.)
\rightarrow current Transducer usually has power circuit which provides power to conversion component and conversion circuit.

Main functions of current Transducers:
(1) Isolated function.

Here in current Transducer input current is completely isolated to output current.
(2.) Conversion function.

It converts nonstandard electrical current to Industrial standard Electrical signal which is much easier for terminal equipment and use.
(3) Enhance signal for long distanceTranste industrial $s t a n d a r d$ enhance weak curcerent to π d standard. Signal so that output signal can transfer to long distance. ext:- 20 mA current can transfer to 1000 km .
(4) salsety function from high voltage then protection mode activates. Input and output is isolated to safety of Terminal equipments. It keeps the whole system safety.

Linear Variable Differential Transformer (LVDT):-
\rightarrow It is a type of inductive transducer e which is used to measure the displacement $(\rightarrow$ voltage)
Lit Convert or Translate the linear motion in to electrical signals.
\rightarrow Treansformere, it has primary winding and secondary winding.
\rightarrow Differential means output voltage is the difference of the Voltages.
construction:-

Here we are having
\Leftrightarrow single primary winding P, Two Secondary windings s_{1} and s_{2}. These preimary and secondary windings wound on a cylindrical Formers. Two secondary windings S_{1} and S_{2} having equal number of turens and are identically placed on either side of primary. primary winding is connected to an alternating current source. soft iron core is placed inside the former.
\rightarrow Displacement to be measured is applied to the arm, attached to soft iron core. Soft ion core is made up off high permeability nickel iron which is hydrogen annealed. Due to this Low harmonics, 100 null voltage and high sens extivity is produced. Soft 1 ron core e is also slotted longitudinally to reduce eddy current losses.
\rightarrow The whole assembly is placed in stainless steel housing and the end lids provide electrostatic and electromagnetic shielding (ire. outside electrostatic and electro -j). magnetic field does not affect to operation of "inside LKDT.)
working:-
\rightarrow primary winding is excited by a.c. Source that produces an electromagnetic field, Due to this Alternating currents, voltages is induced in two secondary windings. Let, the Voltages for secondary windings S_{1} i $S E_{S_{1}}$ and for S_{2} is $E_{S 2}$.
4 In order to get single output roctage we connect two secondary windings S_{1} and S_{2} in series opposition.
\rightarrow The output Voltage is difference of the Voltages in the two windings.

$$
E_{0}=E_{S_{1}}-E_{S_{2}}
$$

CASE-1: when core e is at Null position ie. middle position, flux linkage to s_{1} and S_{2} is equal so $E_{S l}=E_{S_{2}}$

$$
\Rightarrow E_{0}=0
$$

CASE-2: when core is moved to the left of Null position, flux linkage to s_{1} is more than flux linkage to S_{2}, ie. $E_{S_{1}}>E_{S_{2}}$

$$
\therefore E_{0}=E_{S 1}-E_{S 2}
$$

Here output voltage is in phase with the input voltage ire primary voltage. CASE-3:- when core e is moved to right of null position, flux linkage. s_{2} is more than flux linkage to s_{1} ie. $E_{S_{2}}>E_{S_{1}}$

$$
E_{0}=E_{S_{2}}-E_{1}
$$

Here e output Voltage is 180° out of phase with primary Voltage.
\rightarrow The amount of Voltage change in tither secondary winding is proportional to the amount of movement of cone.
\rightarrow Here nonelectrical quantity Displacement is converted to electrical quantity output Voltage.
\rightarrow The amount of output Voltage may be measured to determine the displacemont.
4 The output signal may also be applied to a recoredere (or) to a controller e that can restore the moving system to its normal position.
\Rightarrow output Voltage of LVDT is a linear function of the core displacement with in a limited range of motion say 5 mm from the null position. After 5 mm displacement its there may be non linear relationship.

B

$$
\begin{aligned}
& 0-A \\
& 0-B
\end{aligned}\{5 \mathrm{~mm}
$$

\rightarrow residual Voltage is small output Voltage at null position of soft freon. Residual Voltage created due to (1) Due to presence of harmonics in the supply. Voltage. (2) Due to harmonics produced in output Voltage on account of use of iron core.
(3) Either an incomplete magnetic (or) electric unbalance. (4) magnitude of Residual Voltage is less than 1% of maximum output
Advantages of LVDT: (1) High range of Displacement that can be measured is 1.25 mm to 250 mm , 0.25% full scale linearity. LVOT can measure Low reange of displace cement ie. 0.003 mm . But Dynamic response is Very slow.
(2) Friction and Electrical Isolation:- No physical contact exist between core and coil. No wear and tear due to friction. No damage of instrument parts. It gives intiniteresolutio throughout its operating life.

LVDT continued....
(3) Immunity from external effects:-
\rightarrow separation between core and coilpermits the isolation of pressurized, corrosive (ore) caustic fluids.
(4) High input and High sensitivity:- LVDT give a high output. High sensitivity of about $40 \mathrm{~V} / \mathrm{mm}$.
(5) Ruggedness :- LVDT can tolerate highshock and Vibrations.
(6) Low Hysteresis:- LVDT shows low hysteresis. Due to low hysteresis LXDT has good repeatability.
(7) Low power

Disadvantages of LVDT:-
(1) Relatively large displacements are difficult to measure.
(2) LVDT is verey sensitive to stray Magnetic and electric fields.
(3) Performance of LVDT is also affected by Vibrations.
(4) Temperature also affects its performance.
(5) Dynamic response is slow. Uses and APplications of LVOT:-
(1) primary Transducer (Displacement is converted to output Voltage.)
(2) Secondary Transducer. (In case of Burden Tube, pressure cell LVDT act as secondary Transducer.)
\qquad
St n ÉEramch \qquad
\therefore ofindditionals used \qquad
DIGITAL STORAGE SCMLOSMOPE(DSO):-
\rightarrow It is an instrument which gives as the storage of digital form (ore) it gives the digital copy of a waveform and it allows us to store the signaloreform in digital format indigetal memory and allows us to do the digital signal processing technique over that signal. oscilloscope gives visual displayofwaveforn
\rightarrow DSO accepts analogsignal and converts ion to Digital signal, store it in digital memory y. And then it is going to convert the signal again in to analog form and displayed over the screen.
\rightarrow The input signal is applied to the amplifier e and attenuator section.
\rightarrow The attenuated signal is then applied to the vertical amplibiere. Aster that it is given Analog to Digital converter ADC digitise the analog signal and create a data. set that is stored in the memory.
LData set is processed by the microprocessore and then sent. to the display.

BLOCK DIAGRAM OF DIGITAL STORAGE OSCILLOSGO

Digital storage oscilloscope works in
3 modes of operation.
(1) Roll mode.
(2) store

Mode (3) Hold (ore)
save mote.
\rightarrow In Roll Mode varying signals are displayed on the screen.
$t \rightarrow$ In store mode the signal waveforms are stored in the memorey,
\rightarrow In Hold (ore). Save mode. Some part of the signal will be hold fore some time instant and then they will be stored at the memory.
Digitising occurs by taking a sample of the input. waveform at periodicintereva/s:
sampling Theorem states sampling rate must be atieast twice as fast as the highest freeguency in the input Signal, Aliasing occurs if $f_{s} 2 . f_{m}$. If $\mathrm{F}_{S} \geqslant 2 \mathrm{fm}$ then Resolution of Analog to Digital converter is decreased.
\rightarrow When input signals are stored in analog stare registers, they can be readout at a much slower rate to the A / D converter and the resile are stored in digital store.
LIt allows operation at up to 1 so mega samples pere second. fescuvtion increase waveform Reconstruction:-
\rightarrow Here signal is converted from Digital form to Analog form.

There are 2 ways in which the wave forms wee reconstructed Digital form to Analog from Linear interpolation form. by a straight LHHeree Dots are e joined sinusoidal interpolation joined by a sine wave.
Advantage:- It display visual asevell as nomerical values by analyzing the stored traces. (Sampling values at different instant times.) we can get'
(2) The Display traces can be magnified and also we can change the brightness of the traces and minute detailing can be done:
(3) D so can display 3-1 figure (we) Multiple waveforms fore. comparison purpose.
(4) DSO can capture and store the electronic events.
(5) DSo is widely used because of its advanced features s ike storage, display,' fast tracereates and remarkable bandwidth.
\rightarrow It $\frac{\text { DST shows the graphical }}{\text { sen }}$ representation of the signals fore visual diagnosis and it helps to find out the unexpeted Voltage's source.

Digital Voltmeter
4 It only records the voltage Fluctuations which further require diagnosis.
\qquad
\qquad
OPTICAL PYROMETER:(Disappearing. Filament L It can measures temperature e $700^{\circ} \mathrm{C}$ to $2500^{\circ} \mathrm{C}$. Lit is also called Monochromatic brightness radiation Thermometer. By measuring the brightness in filament: we can measure e the temperature. ...

\rightarrow Filament is connected to Rheostat and in other hand it is connected to Voltmeter. voltmeter e reading will change according to light in the filament Due to supply (ore) Battery connection light energy is produced.
4) From Temperature Source zone radiations are coming.
L Absorption screen well absorb the kadiations from Temperature zone.
\rightarrow Red filter absorbs the Red lights.
\rightarrow Because of hence lights from tempenature zone passing through it and light is focused at filament. so filament is very brigight.
\rightarrow observer can see 2 brightness at the filament one is brightness due to supply and anotherone is brightness due to radiations.
3 cases are available
(1)
(0)

If Filament is dark then Filament is cooler than Temperature sovrece.
(1) If filament is Bright then Temperature 'source'.
(3) If filament is notvisible ie Disappears then Filament and Temperature sourcezone has Equal brightness. ie e.
ooh are at same temperature e Both are at same temperature. we will measure the temperature. according to brightness of the filament.
\rightarrow Let us assume the Filament isiat Dark color inttially.
AFter that we have to supply electricity supply by using Rheostat connection. So filament is brighter and pobyiving more current filament is more brighter than Temperature Zone.
\rightarrow Again by giving more current. filament Brightness is equal with Radiation Brightness and Filament oisappeares, ire. not viscuble from observer side.
\rightarrow whatever current we will supply by Rheostat adjusting that is measured by
Voltmeter.
\Rightarrow whenever the filament is disappeared we have to measure the supplying of Voltage that Voltage will measure the temperature e. change in voltage will measure the change in Temperate
Applications:- (1) is used for measure temperature e of molten metal.
(2) It is used to measure furnace tempenature.
ADVANTAGES: (1) Physical contact of the instrument is not required to measure temperature of the temperature source.
(ii) Accuracy is high $\pm 5^{\circ} \mathrm{C}$.
(iii) Instrument is easy to operate.
(iv) The distance between heat source and instrument does not matter.
L.IMITATION/s:- (1) Temperature none than $700^{\circ} \mathrm{C}$ can only measured.
(ii) it is manually operated. It is cannot be used for continuous monitoring and controlling processes.

PULSE GENERATOR:-
\rightarrow pulse generators are electronics test instruments that are e used to generate pulses i.e. rectangular pulse 8 .
\rightarrow It is used to generate pulses that can stimulate logic circuit.
\rightarrow It is alSo used with an oscilloscope as the measuring device.
\rightarrow The wavelsorem displayed either at the output (ore at some specific points in the system under e test.
\rightarrow It provides both qualitative and quantitative information about the device under test.
characteristics of pulse:-
(1) Baseline:- It is refereed to as the d.c. Level and is the line at which the pulse stares and finishes.
(2) Base Line Drifst/offset : The shift of this line from zero volts (or) the expected value.

(3) Amplitude:- It is measured from the baseline to the steady state pulse value.

Amplitude $11 \Gamma \pi$
(4) pulse rise time and fall time:rise time is the time needed fore the pulse to go from the 10% to 90% of its amplitude. Fall Time is the time fur e the trailing edge to go freon 90% to 10% of its amplitude.
(5) Linearity: It is the deviation of the edge from the straight line drawn through the pulse.

(b) pulse preshoot:- It is the deviation prior to reaching the baseline at the start of pulse.

(7) Ringing: positive and negative peak distortion of 100% Line of input excluding overshoot is called Ringing,

(8) over Shoot:- Maximum height.
(9) Settling Time:- Time period needed For pulse ringing to be within a specified percentage of the pulse amplitude.
(10) pulse Droop (or)sag:- It is the fall in pulse amplitude with time.
(11) Rounding: It is the curvature of the pulse at the leading and trailing edge.
(12) pulse width: It is measured in units of time. It is the time between 50% points on the leading and trailing edge
(13) pulse period:- It is the time between the equal points on the waveform.
(19) pulse Repetition pate:- It determines how frequently pulse occurs.
(15) Duty cycle: It is the ratio of pulse width to the pulse period.
(16) pulse Jitter: It is a measure of short term instability of one event with respect to anothere. PULSE GENERATOR BLOCK DIAGRAM:-
\rightarrow Frequency range of the instrument is covered in seven decade steps from 1 HZ to 10 MHZ with a linearly calibreat dial for adjustments on all reanges.
\Leftrightarrow The duty cycle can be varied from 25% to 15%.
\rightarrow Two independent outputs available (1) 600Ω (Here rise time and fall time is fons at 30 Volt peak amplitude) (2) 50Ω (Here Ruse time and fall time is 5 ns at 5 Volt peak Amplitude.) free e running generator (or) it can be
synchronized with external. Signals.
\rightarrow Trigger output pulses are also available.

$\rightarrow i$ is responsible for capacitor (c) charging, Capacitor (c) discharges through current source. E_{2},

Lo Here we are having symmetry control that determines the ratio of two currents and then it determines Duty cycle of the output waveform.
l frequency Dial controls the sum of the two currents from the current source $\$$.
\rightarrow multiplier selects the size of the ramp capacitors.
\Rightarrow Frequency bia and multiplier provides decade switching and verier control of the frequency of the output.
supper current Source that gives constant current to the Ramp capacitor and treen capacitore is charged up and Ramp voltage increases linearly, when Ramp voltage increasing reaches the upper limit set by internal component $\$$ then schmidt Trigger Changes the state. so output is negative. peversecurnent flows now and capacitor e starts discharging. Now ramp voltage decreasing occurs when negative ramp reaches al predetermined lower level, then schmitt Trigger switches bact to the original state.

\rightarrow output of schmitt Trigger is given to
Trigger output circuit, Amplifier of 50Ω output and Amplifier of 600Ω output.
\rightarrow Trigger output differentiates the square wave output from the schnitt Trigger, inverts the resulting pulse and provides a positive triggering pulse.
$\rightarrow 50$ - output Amplifier has z control ie. output attenuator and vemier contred. The unit is provided by an internal supply that provides regulated voltage to all stages of the instrument.
$\longrightarrow 600 \Omega$ output has only 1 contrioli.e. Amplitude control.
\qquad Sitting - 1 . .
Field. No \qquad
connie \& Nam \qquad
fro \& Pratich \qquad
\because ". cimeditionals used \qquad
DESAUTY'S BRIDGE -
$\underset{H}{\longrightarrow}$ is used fore the measurement of capacitance of a capacitor e by comparing it with a standard capacitore.
\rightarrow There are 4 arms in this bridge having 4 impedances $z_{1}, z_{2}, z_{3}, z_{4}$.

In arms $a-b, Z_{1}=\frac{1}{j w c_{1}}$, In arm $b-c, Z_{3}=R_{3}$,
In arm $c c_{1}, Z_{4}=R_{4}$, In arm $a^{-d} Z_{2}=\frac{1}{j \omega c_{2}}$
4 The Bridge is at balance condition when the detector gives null deflection. That means potential difference bet wen point $\sim \sim$ and $\underset{\sim}{\sim}$ is zero. [voltage drop across $z_{1}=z_{2} \Rightarrow E_{1}=E_{2}$
for Alternating current Bridge, the Bridge balance condition is

$$
z_{1} z_{4}=z_{2} \cdot z_{3}
$$

$$
\begin{aligned}
& \Rightarrow \frac{1}{j w c_{1}} \cdot R_{4}=\frac{1}{j w c_{2}} \cdot R_{3} \\
& \Rightarrow \frac{c_{1}}{c_{2}} \equiv \frac{R_{4}}{R_{3}} \Rightarrow c_{1}=c_{2} \cdot \frac{R_{4}}{R_{3}}
\end{aligned}
$$

c_{1} is unknown capacitance which value we want to measure. C_{2} is standard (ore) known capacitan which value already known by the e
\rightarrow De sauty Bridge is used to find the capacitance of those capacitor which are froe from dielectric losses. That as called ideal (ore) perfect capocitor.
PHASOR DIAGRAM:- It shows the relationship between phasores (ore) between the vectors of various Voltage and current present in the circuit.
\rightarrow fore resistance (R), the voltage and crireant are in same phase with each other.

\rightarrow For capacitor (c), the current Leads voltage by 90°.

1
\rightarrow for inductor (L.), The Voltage leads current by 90°.
rim
Here in this Bridge;

$$
E_{1}=\frac{I_{1}}{j w c_{1}}, E_{2}=I_{2} / j w c_{2}, \quad I_{1}=I_{2} \text { and } I_{2}=I_{4}
$$

$$
\frac{I_{1}}{j \omega c_{1}}=\frac{I_{2}}{j \omega C_{2}}
$$

\rightarrow To measure e capacitance of imperfect capacitor (ore) Nonideal. capacitor we use modified De-sauty's Bridge.
MODIFIED DE-SAUTY'S BRIDGE:-

\rightarrow Here r_{1}, r_{2} represents Loss component.

$$
\begin{aligned}
& z_{1}=R_{1}+r_{1}+\frac{1}{j w c_{1}}, \quad z_{3}=R_{3} \\
& z_{2}=R_{2}+r_{2}+\frac{1}{j w c_{2}}, \quad z_{4}=R_{4}
\end{aligned}
$$

Bridge balance condition is $z_{1} \cdot z_{4}=z_{2} \cdot z_{3}$ By solving we will get

$$
\frac{c_{1}}{c_{4}}=\frac{R_{4}}{R_{3}}=\frac{R_{2}+r_{2}}{R_{1}+r_{1}}
$$

\rightarrow Dissipation facture we can reasureby using this bridge. It is defined as Tangent of loss angle. It. is alspeciprocal of quality factor. quality factor is figure of merit that defines quality (ort) goodness, of electrical component. quality factors gives how much energy is stared in

$$
\begin{aligned}
& \text { the capacitor } \\
& D_{1}=\tan B_{1}=w c_{1} r_{1}, D_{2}=\operatorname{Tan} \delta_{2}=w c_{2} r_{2} \\
& D_{2}-D_{1}=w c_{2}\left(\frac{R_{1} R_{4}}{R_{3}}-R_{2}\right)
\end{aligned}
$$

MEASUREMENT OF 'RÉsistancep':-

$$
(R(1 \Omega)
$$

(1) Low Rusistance
(2) Medium R Repiptanis
(3) High Resistance.

$$
\left.\begin{array}{l}
(R=1-2 t 0 \\
100 \mathrm{K-2}
\end{array}\right)
$$

Lowkesistance Examples:- Armature windings, inode forveard biap resiftancep, sercios. iode forueard binding, Compensation winding.
field wing 4 terminals.
Thos Res istance having 4 .
nedium pesistance Examples: potentiomet ore side wiree, shuntfield winding refiftarie, ite. Md.Resistance having 2 terminals. Exaliex.- opamp iop impedanve, High. Repistance Examplexi- op amp Diode Reverse

Resistances. etc
High Resistance having 3 terminials.

(R_{L})
\rightarrow Guared Terminal is used to avocid leakgge curreent in the insulaty Repcistance.
(G) Guared Terminal.
when we connect the multimetere terminals we tong
 the parellef embination ${ }^{\text {rit }}$ hegh we use avard termin
\rightarrow Loce Resiftance can be meas ver

Low Resintance measured kelvin's dovble Briage.
\rightarrow redium Resistance can be measured by
(1) wheat stone Bridge. (High Accurate)
(2) $\quad V-A-V\{$ method
(3) pubptitution method.
(4) ohn meter. (Less accurate)
\rightarrow High resistance can be measured by
(1) Meggere.
((B) LOSS of chargemethod. (High aeerroty)
(3) Direct Deflection method.
(4) Mega ohm Briidge: (LesB accusrate.) MEASUREMENT Of LOW RESISTANVE :Kelvin's Double Bridge :-

X : unknown Low Reristance.
P, Q, P, q, : Brenge Resiston (ore) known kers r :- contret and lead pesistor.
s:- standared Resistor.
Deteetore will detect \therefore curerent meand potention of ${ }^{~} B$ '" potential "F".

$$
K \cdot V \cdot L \cdot i n \frac{\operatorname{LOLP}-1:}{-I_{1} \cdot P+1_{2} \cdot P+I X=0}
$$

$$
\begin{equation*}
I_{1} \cdot P=I_{2} P+I \cdot X \tag{1}
\end{equation*}
$$

K.V.L: egn en $100 \rho-2$:

$$
\begin{align*}
& -I_{1} Q+I S+I_{2} C=0 \\
& \Rightarrow \quad I_{1} Q=I_{2} C+I S \tag{2}
\end{align*}
$$

$$
\begin{equation*}
I_{2}=I: r \tag{3}
\end{equation*}
$$

put $e s^{n}$-(3) in eqn:-(1) and ey?(2),

$$
\begin{aligned}
& \Rightarrow I_{1} p=\frac{I r}{p+q+r} \cdot p+I X \\
&=I\left[\frac{r p}{p+q+r}+X\right] \\
& \Rightarrow I_{1} \cdot Q=\frac{I \cdot r}{p+q+r} \cdot q+I S \\
&=I\left[\frac{r c \cdot q}{p+q+r}+S\right] \\
& \Rightarrow \frac{p}{q}+(4) \div e q^{n}-(5), \\
&\left.\Rightarrow \frac{r q p}{p+q+r}+x\right]
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \frac{p}{Q}\left[\frac{r \cdot q}{p+q_{r}+r}+S\right]=\frac{r \cdot p}{p+q+r}+X \\
& \Rightarrow X=\frac{p}{Q} \cdot S+\frac{p}{Q} \cdot \frac{r q}{p+q+r}-\frac{r \cdot p}{p+q+r} \\
& \Rightarrow X=\frac{p}{Q} \cdot S+\frac{r \cdot q}{p+q+r}\left[\frac{p}{Q}-\frac{p}{q}\right] .
\end{aligned}
$$

HBy using Kelvin.'t double Bridge we candmeasure medium rescistance by dmeas and the condition, makingpet $\frac{P}{Q}=\frac{p}{q}$
LIn Kelven's Double breidge, both wheatsto breinge and kepin bridge is avaitable. so it is called double bridge. Meaqurement of medeium Resistance:(1) wheat ptone Bridge:-

R: Unknown medium Resietance.
under Balanced condition,
voltage drep acrose $A \cdot B=$ voltage drepp aeress. $A D$.

$$
\begin{align*}
& \Rightarrow I_{1} \cdot p=I_{2} \cdot R \\
& \Rightarrow \frac{I_{1}}{I_{2}}=\frac{R}{P} \tag{1}
\end{align*}
$$

voltage trop? accoss $B C=$ vortage drop $\operatorname{aercoss} D C$

$$
\begin{align*}
& \Rightarrow I_{3} Q=I_{4} \cdot S \\
& \Rightarrow \frac{I_{3}}{I_{4}}=\frac{S}{Q} \tag{2}
\end{align*}
$$

$$
\Rightarrow \quad \frac{R}{P}=\frac{S}{Q} \Rightarrow R=\frac{P}{Q} \cdot S
$$

sensitivity (S):- Thare are 2 sensitivity, in wheatzore (1) Detector sensitivity, (2) Bridge
(1) Detector senfio firixy:-

$$
S_{D} \equiv \frac{\text { change in deflection sensitivity. }}{\text { change in in otential }}
$$ Deifference

(2) Breidge senscitivity: $S_{D}=\frac{\Delta \theta}{e}$

$$
\begin{aligned}
& S_{B}=\frac{\text { change in defiretion }}{\text { unit change in Resostence }}=\frac{4 \theta}{(A R / R)} \\
& \Rightarrow S_{B}=\frac{S_{D} \cdot e}{(\Delta R / R)} \text { inne Bridge sencite depona }
\end{aligned}
$$

$$
\Rightarrow S_{B}=\frac{S_{D} \cdot e}{(\Delta R / R)} \text { anitchange Bue Bridge sensitivity }
$$ depens upon detector sen sity AS (SDT), we may not (

$$
e=v_{B}-v_{D}
$$ loose a.ccuracy.

$$
V_{B}=E-V_{A B}
$$

$$
V_{D}=E-V_{A D}
$$

$\Rightarrow e=E-V_{A B}$.

$$
\begin{aligned}
& V_{A B}=E \cdot \frac{P}{P+Q} \\
& \RightarrowE=\underbrace{E-\frac{(R+A R)}{(R+A R+S)}}_{V_{A 1)}}-\frac{P}{(P+Q)}] \\
& V_{A B}
\end{aligned}
$$

$\Rightarrow D=R / S \Rightarrow Q_{p}+1=S / R+1$

$$
\begin{aligned}
& \Rightarrow \frac{p+a}{p}=R+5 / p \\
& \Rightarrow \quad \therefore=F\left[(p+1 R) \quad \text {) } p+Q=\frac{p}{p+s}\right. \\
& \Rightarrow E=E\left[\frac{(R+A R)(R+S)-R(R+A R+S)}{-(R+A R+S)(R+S)}\right] \\
& =E\left[\frac{R^{2}+R S+\angle R \cdot R+\Delta R S-R^{2}-R \cdot A R-R \cdot S}{(R+\angle R+S)(R+S)}\right. \\
& =E\left[\frac{\Delta R \cdot S}{(R+S)^{2}+\Delta R(R+5)}\right.
\end{aligned}
$$

compere to $(R+S)^{2}$, $\dot{A}(R+S)$ is $10 q$,

$$
\begin{aligned}
& \Rightarrow e=\frac{E \cdot \Delta R \cdot S}{(R+S)^{2}} \\
& \Rightarrow \quad S_{B}=\frac{S_{D} \cdot R}{(\Delta R / R)}= \\
& S_{D} \cdot \frac{E \cdot \pm R \cdot S}{(k+3)^{2}} \\
& \Rightarrow S_{B}=\frac{C_{D} \cdot E \cdot R \cdot S}{(R+S)^{2}}= \\
& \Rightarrow S_{B}=\frac{S_{D} \cdot E}{\left(\frac{R}{S}+\frac{S}{R}+2\right)} \\
& \text { Natimum Rritge } \\
& \text { sensitive. } \\
& \text { When } \frac{R}{S}=
\end{aligned}
$$

$$
S_{B \operatorname{MaX}}=\frac{S_{D} \cdot E}{4}
$$

(2) Ammeter-voitmetrore ancthod (OR) vortmeter-Ammeters method:-
(a) $V-A$ Method:-

$$
\begin{aligned}
& \left(R_{m}\right)_{t}=\frac{V_{L}}{I_{L}} \frac{r_{0}+t}{A_{m m}+r e} \\
& \Rightarrow R_{m} \cong R_{B}+R_{a}
\end{aligned}
$$

$$
\begin{aligned}
\left(R_{m}\right)_{m} & =\frac{V_{01 t}}{\text { Am werm }_{m}} \\
& =\frac{\left.v_{L}+V_{a}\right)}{}
\end{aligned}
$$

$$
=\frac{\left(v_{L}+v_{a}\right)}{I_{L}}
$$

$$
\equiv \frac{V_{L}}{I_{L}}+\frac{\left(V_{a}\right)^{I_{L}}}{I_{L}} R_{L} \vec{R}_{a}
$$

conctuscion's (1) In $V-A$ mettod for the megrurement of medium resistance, measure value isgreater than True value. ($\left.R_{m}\right\rangle R_{t}$)
(2) In V-A method the ererore bcz of ammeter.
(3) The V-A method best suitable forethe meaqurement of high. Rescotance so the medium. Range iso that the $\%$ everer is monemum.

Heresore $=$ meaqure ralve - Trupelue peoce value.

$$
\downarrow \text { reveror }=\frac{\rho_{a}}{\left(\prod_{m}(o+1) R_{L}\right.} \times 1 \text { ro }
$$

(i) A-v method:-

$$
\begin{aligned}
& \Rightarrow\left(R_{m}\right)_{m}=\frac{V_{L}}{\frac{V_{L}}{R_{L}}+\frac{V_{L}}{R_{V}}} \Rightarrow\left(R_{m}\right)_{m}=\frac{1}{\frac{1}{R_{L}}\left(1+\frac{R_{L}}{R V}\right)} \\
& \Rightarrow\left(R_{m}\right)_{m}=\frac{R_{L}}{\left(1+\frac{R_{L}}{R_{V}}\right)} \Rightarrow\left(R_{m}\right)_{m}+\frac{\left(R_{m}\right)_{m} \cdot R_{L}}{R_{V}}=R_{L} \\
& \Rightarrow \frac{\left(R_{m}\right)_{m}-R_{L}}{R_{L}}=\frac{-\left(R_{m}\right) m}{R V}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow 100 \times\left(\frac{\left(R_{m}\right)_{m}-R_{L}}{R_{L}}\right)_{\% \text { erere }} \times \frac{-\left(R_{m}\right)_{m}}{R_{V}} \times 100 \\
& \text { conclusion }:-\frac{\left(R_{L} \downarrow\right)}{\text { les } \beta \text { than Treve }}
\end{aligned}
$$

(1) meapureed value is less than Treveralue.
(2) In $A-v$ method the erreore bcz of voltmetion.
(3) The AVmethod is best svitable if measumement low resistanse in nedium range.
NOTE:- In both the methody the ererore bcz of always load, sode of the ingtrument.

Equate the errore in both themethods,

$$
\text { ate the } / R_{L}=R_{L} / R_{V} \Rightarrow R_{L}=\sqrt{R_{a} \cdot R_{V}}
$$

Ra:- Ammeter internal Resistance
Rvir voltmeter internal Resistance.
"RLE of the Resistance it we connect it $=\sqrt{R a^{\prime} R V}$
across the pood tomeasurel its value then we find equal \%ererore in both the methods:
(4) ohm meter iss
 Imein means ' R_{m} ' $\%$ max. and Imax means $R_{m}{ }^{\prime \prime}$ is minimum.
\rightarrow Here the distance sale is Reverse scale.
\rightarrow It is suitable for measurement of medium R el istanex. the E \& \& \& \& I will not circulate.
meapuresment of High Resistance:
(1) Meggere ${ }^{\circ}$ - By replacing the battery with Hand driven generatore, we can measure e high

resistance. since the Hand driven generator will produce more voltage compare to battery so that it is sufficient to drive the current in the battery.
\rightarrow The meggere is best suitable. to check the continuity in case of wider ground cables.
aegir) terminals weancas continuity
$(i)\binom{1}{\square}(\because \square$
(2) LOSS of charge Method:-

DC

$$
\begin{aligned}
& v^{\prime}(t)=V \cdot e^{-\frac{t^{\prime}}{R c}} \\
& \Rightarrow \frac{v}{V}=e^{-t / R C}
\end{aligned}
$$

$$
\Rightarrow \ln \left(\frac{v}{v}\right)=\frac{-t}{R c}
$$

$$
\Rightarrow \ln \left(\frac{v}{v}\right)=\frac{t}{R c} \Rightarrow R=\frac{t}{c \cdot \ln \left(\frac{v}{v}\right)}
$$

(CR)

$$
\Rightarrow R=\frac{0.434 t^{2}}{c \cdot \log _{10}\left(\frac{v}{v}\right)}
$$

\rightarrow In e Lost of charge method, the neth measured value is less than free value since the electrostatic voltmeter will offer. Some internal capacitance ie. being parallel worth
apteral capacetance po that net ca capacitance value well increase and measured (R) decreases.
\rightarrow The loss of charge method is best suitable fore the mespurement of insulation resistance in case of underground cable β.

$$
\begin{aligned}
& \vec{E} \cdot d \vec{S} \equiv \frac{1}{\varepsilon_{0}} \cdot Q \\
& \vec{E} \cdot 2 \pi r \times 1=\frac{1}{\varepsilon_{0}} \cdot Q \\
& \Rightarrow E_{0}=\frac{Q}{2 \pi \varepsilon_{0} \cdot r} \Rightarrow\left(E_{0} \alpha \cdot \frac{1}{r}\right)<
\end{aligned}
$$

\rightarrow

Train Line's

Here the charge on Furnace of cores and on metal sheath minimum charge, so it acts as a capacitor. no need to provide an extra caps the M / M by lois of charge method and also in cores high dc ip available se no need ofyextrea supply. so here use of this method is cheaper.
the distance in coaxial cable op insulation payers from core e \uparrow, the because as the E from core cress surface to metal sheath is inversly propotional to redial distance so it actual elates at distant place. \&O no need of providing thick insulation of high dielectric at outer levels. Hence $R_{1}>R_{2}>R_{3} \cdots \cdots$

$$
\varepsilon_{1}>\epsilon_{2}>\epsilon_{3}
$$

\rightarrow LOSS of charge method i"\& costly except in this case because we have to get special connection of very high de supply and to store the $d c$ voltage (heghvalue)
capacifore regd isvery costly and E.S.C. also itsect is coptly.
(3) Direct Deflection Method:
\rightarrow This method is best quitable fore the measurcement of Resiqtivity. (S).
$\rho=R \cdot \frac{A}{l}$

(4) mega ohm Bridge:

Here High resistance conncetred. ' G ' terminal connected to ' B^{\prime} ', terms ' p ' ispmal and ' q ' os small. High Resistances are connected in parallel with $P \lambda$ and $Q 1$. so Resultant Rescstance is
$p Q$ (small) If $\frac{i}{2}$ hoghrerospan = small Resistance
do effect of insulator Res iftanve can a not be affected to the calculation of high. value of reststance $\left(R_{1},\right)$.,
imp
MEASUREMENT OF INDUCTANCE O- (L) AC Bridges.
(1) Maxwell', Inductance Bridge:-
(2) Maxwell's inductance -capacitance Bridge.
(3). Hag's, Bridge.
(4) owen's Bridge.
(5) Anderson's. Bridge.
(1) Maxwell Inductance Areidge:

The condition for balancing,

$$
\begin{aligned}
& z_{1} \cdot z_{4}=z_{2} \cdot z_{3} \text { (and) } \\
& \angle \theta_{1}+\angle \theta_{4}=\angle Q_{2}+\angle \theta_{3}
\end{aligned}
$$

$$
\overrightarrow{E^{\prime}}=\overrightarrow{E_{1}}+\overrightarrow{E_{3}} \quad \text { (Or) } \quad \overrightarrow{E_{2}}+\overrightarrow{E_{4}}
$$

phasore Bcagram $_{0}$ imp 2 mark

$$
\begin{aligned}
& z_{1} \cdot z_{4}=z_{2} \cdot z_{3} \\
& \Rightarrow\left(R_{1}+j \omega L_{1}\right)\left(R_{4}\right)=\left(R_{2}+j \omega L_{2}\right)\left(R_{3}\right) \\
& \Rightarrow R_{1} R_{4}+j \omega L_{1} R_{4}=R_{2} R_{3}+j \omega L_{2} R_{3} \\
& \text { snmporcing ,wo seder weget }
\end{aligned}
$$ compareing two seder weget.

$$
\begin{array}{ll}
& R_{1} R_{4}=R_{2} R_{3}, \\
\Rightarrow & R_{1}=\frac{R_{2} \cdot R_{3}}{R_{4}},
\end{array}, \begin{array}{ll}
L_{1} R_{4}=L_{2} R_{3} \\
& L_{1}=\frac{L_{2} R_{3}}{R_{4}} \\
\text { cr and } L_{2}
\end{array}
$$

"r R_{2} and L_{2} " are differervent
in both the cases.

$$
Q=\frac{C L}{R}
$$

\rightarrow By using maxcuen's Inductance Breidge we can not measure quality factore since wreidge to breing theis bis cond. (wo: capacetore kesonarce cond. (xpo: present.)
(2) Maxwell's inductance-capalitans Briage os

$$
\left.\left.\left.\begin{array}{rl}
& z_{1} \cdot z_{4}=z_{2} \cdot z_{3} \\
\Rightarrow & \left(R_{1}+j \omega L_{1}\right)\left(R_{4} \cdot \| \frac{1}{j \omega C_{4}}\right)=R_{2} \cdot R_{3} \\
\Rightarrow & \left(R_{1}+j \omega L_{1}\right)\left(\frac{R_{4} \cdot \frac{1}{j \omega c_{4}}}{R_{4}+\frac{1}{j \omega c_{4}}}\right)=R_{2} \cdot R_{3} \\
\Rightarrow & \left(R_{1}+j \omega L_{1}\right)\left(\frac{R_{4}}{j \omega c_{4}}\right. \\
\Rightarrow & \frac{R_{4} \cdot j \omega c_{4}+1}{j \omega c_{4}}
\end{array}\right)=R_{2} \cdot R_{3}\right)=R_{2} \cdot R_{3}\right)
$$

$$
\begin{aligned}
& \Rightarrow R_{1}=\frac{R_{2} \cdot R_{3}}{R_{4}} \text { and } L_{1}=R_{2} R_{3} C_{4} \\
& \text { quality-factor }(Q)=\frac{\omega L_{1}}{R_{1}} \\
& \Rightarrow Q=\omega C_{4} \cdot R_{y}
\end{aligned}
$$

4 By using maxavell's thotraisge we can Jmeasure only low orvality-factor coil: (Q\&10) Hay's Bridge

$$
E_{y}=V_{R 4}+V_{c y}
$$

$$
\begin{aligned}
& z_{1} \cdot z_{4}=z_{2} \cdot z_{3} \\
& \Rightarrow\left(R_{1}+j w L_{1}\right)\left(R_{4}+\frac{1}{j w c_{y}}\right) \equiv R_{2} R_{3} \\
& \Rightarrow \quad R_{1} R_{y}+\frac{R_{1}}{j \omega C_{y}}+j \cdot L_{4} R_{4}+\frac{\omega L_{1}}{\omega C_{y}} \\
& =R_{2} R_{3} \\
& \Rightarrow \begin{array}{l}
\left.\Rightarrow R_{1} R_{y}+\frac{L_{1}}{C_{4}}\right)+j\left(\omega_{L_{1}} R_{4}-\frac{R_{1}}{\omega C_{4}}\right)=R_{2} R_{3} \\
\text { both the }
\end{array} \\
& \text { comparing both the sided unset } \\
& R_{1} R_{y}+\frac{L_{1}}{C_{y}}=R_{2} R_{3}, \quad \omega L_{1} R_{y}=\frac{R_{1}}{\omega C_{y}} \\
& R_{1}=\frac{w^{2} C_{4}^{2} R_{2} \cdot R_{3} \cdot R_{4}}{1+w^{2} C_{4}^{2} \cdot R_{4}^{2}} \quad L_{1}=\frac{C_{4} R_{2} R_{3}}{1+\omega^{2} C_{4}^{2} \cdot R_{4}^{2}} \\
& \Rightarrow\left(R_{1}+j \omega L_{1}\right)\left(\frac{j \omega C_{4} R_{4}+1}{j \omega C_{4}}\right)=R_{2} R_{3} \\
& \Rightarrow\left(R_{1}+j \omega L_{1}\right)\left(1+j \omega R_{4} C_{y}\right)=j \omega R_{2} R_{3} C_{y}
\end{aligned}
$$

$$
\begin{gathered}
\Rightarrow R_{1}+j w R_{1} R_{4} c_{4}+j w L_{1}-w^{2} L_{1} R_{4} c_{y} \\
=j w R_{2} R_{3} c_{4}
\end{gathered}
$$

$$
\begin{aligned}
&=j \omega R_{2} R_{3} \\
& \Rightarrow\left(R_{1}-\omega^{2} L_{1} R_{4} C_{4}\right)+j \omega\left(R_{1} R_{4} C_{4}+L_{1}\right) \\
&=j \omega R_{2} R_{3} C_{4}+0
\end{aligned}
$$

$$
\begin{aligned}
& L_{1} R_{4} C_{4} \\
& =j \omega R_{2} R_{3} C_{4}+O
\end{aligned}
$$

$$
\begin{array}{r}
R_{1} R_{4} C_{4}+L_{1}= \\
R_{2} R_{3} C_{4}
\end{array}
$$

$$
L_{1}=R_{2} R_{3} C_{4}-R_{1} R_{4} C_{4}
$$

$$
\begin{aligned}
& \Rightarrow L_{1}=R_{2} R_{3} C_{y}-w^{2} L_{1} R_{y} C_{y} \cdot R_{y} C_{y} \\
& 2 \times 2 \cdot R_{w}^{2} \cdot L_{1}
\end{aligned}
$$

$$
\Rightarrow L_{1}=R_{2} R_{3} C_{4}-w^{2} C_{4}^{2} \cdot R_{4}^{2} \cdot L_{1}
$$

$$
\Rightarrow L_{1}+w^{2} C_{4}^{2} \cdot R_{4}^{2} \cdot L_{1}=R_{2} \cdot R_{3} \cdot C_{4}
$$

$$
\begin{aligned}
& \Rightarrow L_{1}+w L_{4}\left(1+w^{2} \cdot c_{4}^{2} \cdot R_{4}^{2}\right)=R_{2} \cdot R_{3} \cdot K_{4} \\
& \Rightarrow L_{1}
\end{aligned}
$$

$$
\Rightarrow L_{1}=\frac{R_{2} R_{3} C_{4}}{1+w^{2} \cdot C_{4}^{2} \cdot R_{4}^{2}}
$$

put it, form the form of R1).

$$
\begin{aligned}
R_{1} & =w^{2}\left(\frac{R_{2} R_{3} C_{4}}{1+w^{2} C_{4}^{2} \cdot R_{4}^{2}}\right)_{1} R_{y} C_{y} \\
& =\frac{w^{2} c_{4}^{2} \cdot R_{2} R_{3} R_{4}}{1+w^{2} c_{4}^{2} \cdot R_{4}^{2}}
\end{aligned}
$$

$$
Q=\frac{w \cdot L_{1}}{R_{1}}, \quad Q=\frac{1}{w C_{y} R y}
$$

It is used to measure high
Quapity factor of acoil: $(Q>10)$ Quapity factor of acoil
owen's Briodge ós

$$
\begin{aligned}
& \Rightarrow z_{1} \cdot z_{4}=z_{2} \cdot z_{3} \\
& \Rightarrow\left(R_{1}+j \omega L_{1}\right)\left(\frac{1}{\rho \omega c_{4}}\right)=\left(R_{2}+\frac{1}{j \omega C_{2}}\right) \times R_{2} \\
& \Rightarrow \frac{R_{1}}{j \omega C_{4}}+\frac{\omega L_{1}}{\omega C_{4}}=R_{2} R_{3}+\frac{R_{3}}{j \omega C_{2}} \\
& \Rightarrow-j \frac{R_{1}}{\omega c_{4}}+\frac{L_{1}}{c_{4}}=R_{2} R_{3}-\frac{j R_{3}}{\omega C_{2}}
\end{aligned}
$$

$$
=\vec{E}_{4}
$$

- varciab/e

$$
Q=W_{\cdot} C_{2} \cdot R_{2} \quad Q \alpha C_{2}
$$

a It is used for a<10
But maxwell's inductance and eapar citance Bridge lis best suitable for meas Q<10, (morel accureate

4 Variable capacitor oss dioficult to macte. $c=\mu$ Allarefa ${ }^{\text {d }}$
LF Fixed Repister is defficurt both
Fered and varibebe entuctores are diffeicolt to make.
(5) Andereqon's Bridge :-

$$
\begin{aligned}
& z_{1} \cdot z_{4}=z_{2} \cdot z_{3} \\
& \Rightarrow \\
& \Rightarrow R_{1}=\frac{R_{2} \cdot R_{3}}{R_{4}}
\end{aligned}
$$

$$
L_{1}=\frac{C \cdot R_{3}}{R_{4}}\left[\begin{array}{r}
R_{2}+R_{2} \cdot R_{4}+ \\
R_{2} \cdot R_{4}
\end{array}\right]
$$

$$
z \cdot 7=\frac{R \cdot R y}{R+R \dot{y}+C}
$$

$$
Q=\frac{w \cdot L_{1}}{R_{1}}=\frac{w C \cdot R_{3}}{R_{4}}\left[B R_{2}+R_{1} \cdot R_{4}+R_{2} R_{4}\right]
$$

$$
=(x) \frac{R_{2} \cdot R_{3}}{R_{4}}
$$

\rightarrow since here fixed capacitor e is there, not variable crocitor. So we \leftarrow Resonance can not be obtained. Hence we can not we measure the value of quality factor (a) here.

It is frastest Bridge.
Hay'\& Bridge \rightarrow \&lowe st Breidge
Que A Breidge ckt. fore the measure meat of J effecterve Req istanee and inductance of an ciren coree cocil. The arm. AB CBs consisting of an unknown inductore. Arem BC i apore resistere R_{3}, arem $\frac{C D: ~ a ~ l o s s i e s s ~}{\text { Arem }}$ capacitore: $C y$, Arm DA: A. Caparitore C_{2} in sercies with Resistance $R 2$. under balance cond $R_{3}=10 \Omega, R_{2}=842 \Omega$, $C_{2}=0.135 \mu \mathrm{~F}, \quad C_{4}=1 \mathrm{MF}$.
calculate \therefore the Reff, and self inductance of acoci: Derive the esnf from balancing wid drial the phasore diagream undere balance cond?.
So1: \quad, $R_{2}=842,2, \quad R_{3}=102$

$$
C 2=0.135 \mu \mathrm{~F}, \quad \mathrm{Cy}=1 \mathrm{MF}
$$

2t is owen's sridge.

MEASUREMENT OF CAPACITANCE (AC BRIDGES):-
(1) Desauty Bridge.
(2) Modified Desauty Bridge.
(5) Sehering Bridge.
pure capacitors pure capacitors

1

$V=V_{m} \cdot \sin \omega t$

$$
\begin{aligned}
& V=V_{m} \\
& \vec{V}^{\prime}=V_{B}+7
\end{aligned}
$$

$\vec{v}=$ Lose angle,
$\operatorname{Tan} B=\frac{V_{R} O}{V C}=\frac{D \cdot R}{D \cdot X_{C}}=\frac{R}{(1 / 2 x)}$
Dissipation factor (D-factor)

$$
=T C N S=W C R
$$

$$
Q-\text { Factor }=\frac{w L}{R}=\frac{1}{w C R}
$$

fore a pure capacitor $\delta=0$,
fore a pure resistor $\beta=90^{\circ}$

$$
\begin{aligned}
& z_{1} z_{4}=z_{2} z_{3} \\
& \Rightarrow\left(R_{1}+\frac{1}{s c_{1}}\right)\left(R_{4} \| \frac{1}{s c_{4}}\right)=S c_{2} \cdot R_{3} \\
& \Rightarrow\left(\frac{S R_{1} C_{1}+1}{S C_{1}}\right)\left(\frac{\frac{R y}{S C_{y}}}{R_{y}+\frac{1}{S C_{y}}}\right)=S C_{2} \cdot R_{3} \\
& \Rightarrow\left(\frac{S R_{1} C_{1}+1}{S C_{1}}\right)\left(\frac{R y}{S C_{y} R_{y}+1}\right)=S C_{2} \cdot R_{3} \\
& \Rightarrow\left(\frac{j \omega R_{1} c_{1}+1}{j \omega c_{1}}\right)\left(\frac{R y}{j \omega c_{y} R_{4}+1}\right)=j^{\omega_{c_{2}} R_{3}} \\
& C_{1}=\frac{R_{4} C_{2}}{R_{3}}, R_{1}=\frac{R_{3}\left(C_{4}\right)}{C_{22}} \\
& \text { D-factor }=W C_{1} R_{1} \equiv w R_{4} G_{4}
\end{aligned}
$$

MEA SUREMENT OF FREQUENCYO

$$
\begin{aligned}
& \frac{\text { whepn's Bridge: }}{z_{1} \cdot z 4}=z_{2} \cdot z_{3} \\
& \left(R_{1}+\frac{1}{j w c_{1}}\right)\left(R_{4}\right)=\left(R_{2} \| \cdot \frac{1}{j w c_{2}}\right)\left(R_{3}\right) \\
& \Rightarrow R_{1} R_{4}-j \frac{R_{4}}{w c_{1}}=\left(\frac{R_{2} \cdot \frac{1}{j w c_{2}}}{R_{2}+\frac{1}{j w c_{2}}}\right) \cdot R_{3}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad R_{1} R_{4}-j \cdot \frac{R_{4}}{\omega C_{1}}=\left(\frac{R_{2}}{j R_{2} \omega C_{2}+1}\right) \cdot R_{3} \\
& \Rightarrow R_{1} R_{4}-j \frac{R_{4}}{\omega C_{1}}=\frac{R_{2} \cdot R_{3}}{1+j R_{2} \omega_{1} C_{2}} \\
& \omega^{2}=\frac{1}{R_{1} R_{2} C_{1} C_{2}} \Rightarrow \omega=\frac{1}{\sqrt{R_{1} R_{2} C_{1} C_{2}}} \\
& \Rightarrow f=\frac{1}{2 \pi \sqrt{R_{1} R_{2} C_{1} C_{2}}}
\end{aligned}
$$

$$
Q-M E T E R
$$

$\rightarrow a$-meter stands fore "Quality factors meter. whose principle of operation." is series Resonance.
L) Voltage magnification property xhebited by a series RLC ckt. art resonance is used in the design of a^{4}-meter.
\rightarrow There are 3 type of connection of a-metcr.
(1) Direct connection / Direct measurement mode.
It is used for measurement orvario. electrical properties of a test $6 i \%$ is
LT True (or) actual quality facture of coil $(Q$-co si).
\rightarrow self inductance of $a+$ est $\operatorname{coin}(L)$
\rightarrow self capacitance's of a coir (or) bistricisuted capacitance of $\cos (\mathrm{cd})$.
\rightarrow Resistance of coil (Renoir).
Less series connection (elements. are connected on series), used fore low impedance measurement.
(iii) Shunt connection (ore) parallel connection (elements are connect in parallel i) used bor high impedance measurement
sercies RLC CKt:-

condextion for reponance $x_{L}=x_{C}$.

$$
\Rightarrow w \cdot L \equiv \frac{1}{w \cdot c} \Rightarrow 2 \pi f \cdot L \equiv \frac{1}{2 \pi f \cdot c}
$$

Frequency at Resonance

$$
2 \pi f \cdot L=\frac{1}{2 \pi f \cdot c} \Rightarrow f=\frac{1}{2 \pi \sqrt{L C}}
$$

\Rightarrow Impedance at Resonance:-

$$
z=R+j\left(\omega L-\frac{1}{\omega c}\right)=
$$

atr Resonance, $\omega L=1 / w e$

$$
\therefore z=R
$$

$$
\begin{aligned}
V_{c}=I \times X_{c} & =\frac{V_{i n}}{z} * X_{c} \\
& =\left[\frac{X_{c}}{z}\right] \cdot V_{i n}
\end{aligned}
$$

at Resonance: $Z=R$ (minimum)

$$
\begin{aligned}
& \left.\therefore V_{(\text {max }}=\left[\frac{X_{C}}{R}\right] V_{\text {in }}\right] \\
& V_{C \text { (max }}=\left(\frac{X_{L}}{R}\right) V_{i n} \\
& \Rightarrow V_{C \text { max }}=Q \cdot V_{i n}
\end{aligned}
$$

$$
Q=q u a l i t y \text { factor }
$$

$$
Q=\frac{X_{L}}{R} \text { factor) } \frac{X_{c}}{R}
$$

\Rightarrow A series. RLC cit acts al "V VITAGE MAGNIFIER" cire. the applied voltage ($V i m$) will be maggiefield by Q-times and across the capacitor.

$V_{i n}$-oscillatay ep voltage.
$r-$ Insertion Reqiqtance.

$$
\left(\begin{array}{l}
\text { * } R_{\text {sh }}=\text { shunt Resestanie } \\
\text { * } 0.02 \Omega \\
\text { (ore) } 0.05-2
\end{array}\right)
$$

θ - resonant fresevency
$R_{\text {coil }}$ - Resistance of toft coil.
L - self inductance of teat coil.
c_{d}-self capacitance of Test coil.
C -Tuning capacitance' (we)
resonating capacitance.
V_{C} - voltage across. Capacitor.
working: Introduce the test cool on to the socket of the Q-meters. set the fricivency and usp voltage. $\left.(B), V_{i n}\right)$, and Resonating capocetance fell the capacitor e indicates maximum voltage. volume $u x$
\rightarrow Take down, the possible readings
from: $Q=$ me tr. from Q-me fir $^{\text {F }}$
\rightarrow Then, Q can be calculated as:

$$
\begin{aligned}
& \text { Then, } Q \text { can be capacitor voltmeter Reading } \\
& \begin{aligned}
Q= & \frac{\text { supply voltmeter Reading }}{} \\
= & \frac{V_{\text {Coax }}}{V_{\text {in }}}
\end{aligned}
\end{aligned}
$$

To avoid such calculations, ti desognere prevercles a scale calif braced to read $Q_{\text {b er given }}$

\rightarrow so the capacitor voltmeter endrincotes Q and also voltage. As such it t is also called ap Q-val meter.
\rightarrow The indicated $Q^{-f_{i}^{\text {cor }} \text { a }}$ not true Q-fot the coil. But; it is entire cRt $Q \cdot \dot{C}$.

$$
\begin{aligned}
Q_{\text {True }} & =\frac{\omega \cdot L}{R_{\cos 1}} \frac{1}{\omega C \cdot R_{\cos 1}} \\
& =Q_{\cos 1}
\end{aligned}
$$

But,

$$
\begin{aligned}
Q_{\text {meaquaced }} & =\frac{\omega L}{R_{\text {coin }}+r} \cdot\left(\begin{array}{l}
1 \\
\omega\left(c+c_{\lambda}\right)\left(R_{\text {cor }}+r\right)
\end{array}\right. \\
& =Q_{c k t}
\end{aligned}
$$

The Resulting difference betwrenthe measured and true Q is ererore in Q-measurement.

$$
\begin{aligned}
\text { Ervere } & =Q_{\text {meas }}-Q_{\text {True }} \\
\% \text { Error } & =\frac{Q_{\text {meas }}-Q_{\text {true }}}{Q_{\text {true }}} \times 200 \%
\end{aligned}
$$

\rightarrow This error in q-measurement is due to 2 enron sources. (1) Insertion Resecistance ((r)
(2) C_{d}

LT The Q-voltmeter is also known as ckt - a meter.
ELECTRICAL MEASUREMENT: meghan ism form: producing control Force:- (Tc):-

ELECTRONIC MEASUREMENT:-
(1) Error in Q-measurement due to re:

$$
\begin{aligned}
\text { LA } Q_{\text {true }} & =\frac{\omega L}{R_{\text {cool }}} \\
Q_{\text {meas }} & =\frac{\omega L}{R_{\text {coil }}+r} \\
\rightarrow \% & =\frac{Q_{\text {meas }}-Q_{\text {true }}}{Q_{\text {true }}} \times 100
\end{aligned}
$$

$$
=\frac{\frac{\omega L}{R \cos +r}-\frac{\omega L}{R \cos 1}}{\frac{\omega L}{R_{\operatorname{col} 1}}} \times 100
$$

$$
\% \text { Error }=\frac{-r}{R_{\text {coil }}+r} \times 100 \%
$$

$$
\rightarrow \text { corvee ction facture }=\frac{Q_{\text {true }}}{Q_{\text {meas }},}
$$

$$
=\frac{\omega / R_{\text {coil }}}{\omega L / R_{\text {coil }}+R}=\frac{R_{\text {meir }}+R}{R_{\text {coil }}}
$$

$$
\text { a } \operatorname{rie}\left[Q_{\text {the }}=Q_{\text {mas. }}\left[1 t_{R}^{\frac{r}{\operatorname{coi} 1}}\right]\right.
$$

where $Q_{\text {meal }}=$ Reading of C Pt- Q meter

$$
\begin{aligned}
& r=\text { Insertion resistance } \\
& R_{\text {coil }}=\operatorname{cocl} R e s i s t a n c e
\end{aligned}
$$

Note: This. error in Q-measurement due to 're' is very low and
negligibie, since. $\quad \pi \ll R_{\text {coer }}$. Note:- ererore in Q-measure mient dup to mespdual inductance "\% negligiue, fince mesidual inductionc.

$$
\begin{aligned}
Q_{\text {true }} & =\frac{1}{\omega C R_{\text {coil }}} \\
Q_{\text {meas. }} & =\frac{1}{\omega\left(c+c_{d}\right) \cdot\left(R_{\text {coil }}+r\right)} \\
& \cong \frac{1}{\omega\left(c+c_{d}\right) \cdot R_{\text {coil }}} \quad\left(\because \pi \ll R_{\text {coil }}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left.\rightarrow \begin{array}{l}
\text { \% Errore } \\
\text { dueto } c_{d}
\end{array}\right\}=\frac{Q_{\text {meas }}-Q \text { trwe }}{Q_{\text {true }}} \\
& =\frac{\frac{1}{w\left(c+c_{d}\right) R_{\text {coil }}}-\frac{1}{w c \cdot R_{c o i l}}}{\omega \cdot C \cdot R \text { coil }} \\
& \% \text { Errore }=\frac{-c_{d}}{c+c_{d}} \times 100 \%
\end{aligned}
$$

$$
\begin{aligned}
\triangle \text { corerection fractore } & =\frac{\frac{1}{1} \text { trewe }}{Q_{C} \cdot R_{\text {coel }}} \\
& =\frac{1}{\omega\left(C^{\prime}+C_{d}\right) \cdot R_{\text {coil }}} \\
& =\frac{C+C_{d}}{C}
\end{aligned}
$$

$$
\left[Q_{\text {true }}=Q_{\text {meas }}\left[1+\frac{c_{q}}{c}\right]\right.
$$

where, $Q_{\text {meas }}=$ Reading of ckt Q-meter
C = Reading takienfrem calibrated scale of dial of tuning capacirfore.
$C_{d}=$ To calculate the tome Q of coils, the value of Cd of $\operatorname{coc} 1$ is required. since the correction bractore in roves cod of the coil. so always first measure c_{d}.
(1) measurement using "Direct coneaction of Q-metre.
(1) measurement of " $c_{d}^{"}$ of cock: Introduce. the given test $c, 0 \%$ in to socket. Of Q-meter and resonate twice at f_{1} and f_{2}.
\rightarrow Resonate 2 times:- f_{1} and f_{2}.

$$
\text { say, } n=f_{2} / f_{1} \text {. }
$$

\rightarrow Note sown Readings from Q meter.

キ. $\frac{f_{1}}{n \cdot f x}=\sqrt{\frac{1\left(c_{2}+c_{d}\right)}{y\left(c_{1}+c_{d}\right)}}$

- Squaring. sides we get

$$
\begin{aligned}
& \Rightarrow \frac{1}{n^{2}}=\frac{c_{2}+c_{d}}{c_{1}+c_{d}} \Rightarrow n^{2} c_{2}+n^{2} \cdot c_{d}=c_{1}+c_{d} \\
& \left.\quad \Rightarrow n^{2} c_{d}-c_{d}=c_{1}-n^{2}-1\right)=c_{1} c_{2}-n^{2} \cdot c_{2} \\
& \\
& \quad \Rightarrow c_{d}=\frac{c_{1}-n^{2} \cdot c_{2}}{n^{2}-2} \\
& \text { Where }
\end{aligned}
$$

C_{1} and C_{2} aver
Resonating capacitance values.
(2) Measurement of "L. of coss": we know $f=\frac{1}{2 \pi \sqrt{L\left(i+c_{d}\right)}}$
squaking on both sidep,

$$
\begin{aligned}
& f^{2}=\frac{1}{(2 \pi)^{2} \cdot L \cdot\left(c+c_{d}\right)} \\
& \Rightarrow L=\frac{1}{(2 \pi \cdot f)^{2}\left[c+c_{d}\right]}
\end{aligned}
$$

\therefore first meapurce c_{d} andtwen L an be meaquived uqing eithere f_{1}, c_{1}, c_{d} (ort) f_{2}, c_{2}, c_{d}.

$$
\begin{aligned}
\text { i.e. } \quad L & =\frac{1}{\left(2 \pi f_{1}\right)^{2} \cdot\left[c_{1}+c_{d}\right]} \\
L & =\frac{1}{(\text { orc })}
\end{aligned}
$$

Que: data: $f_{1}, c_{1}, f_{2}, c_{2}$

$$
\text { (1) } c_{d}=\text { ?, (1r) } L=\text { ? }
$$

(3) Meapurement of " $Q_{\text {true }}$ of coil":

$$
\text { we know: } \begin{aligned}
& Q_{\text {trwe }}=Q_{\text {meos } \cdot\left[1+\frac{c_{d}}{c}\right]} \\
& \hline c_{d} \text { of cos1" }
\end{aligned}
$$

\therefore ferest meapure ". c_{d} of corl" Then, measure Q tive of coil using either

$$
\begin{aligned}
& \text { Q.1, } C_{1}, C_{d}\left(O^{\prime \prime}\right) Q_{2}, C_{2}, C d_{d} \\
& \text { i.e. }, Q_{\text {true }}=Q_{1}\left[1+\frac{C_{d}}{C_{1}}\right] \\
& \text { (ort) }
\end{aligned}
$$

$$
Q_{\text {true }}=Q_{2}\left[1+\frac{c_{q}}{c_{2}}\right]
$$

(4) $\frac{\text { measure-ment }}{\operatorname{coc} i l} \frac{\text { Rcal }}{\text { (4esistance of }}$
we How, $Q_{\text {true }}=\frac{\omega L}{R_{\text {coll }}}$

$$
\text { \&e. } \quad R_{\operatorname{coil}=} \frac{\omega L}{Q \cot +\text { trave }}
$$

\therefore first measures "c of coil" and then measure L and arerwe, Then only $R_{\text {cor }}$ can be measured.
$\frac{\text { Que: }}{\text { When }}$ A reading of 120 is obtained x when a standard. inductor is cinecoed on the chat of Q-metere and the variable, capacitor is aslgusted to 300 pF : A loss less capacitor E_{x} is then connected or parapet parallel astr variable capacitor and same reading is obtained when the variable capaci for is readiustic to a value of 200 PF . Then the value of $C_{x} \quad C_{\&} \rightarrow$.

$$
Q_{1}=Q_{2}=120
$$

$$
\begin{aligned}
\Rightarrow \frac{1}{w_{1} \cdot C_{1} \cdot R_{\text {coil }}} & =\frac{1}{w \cdot\left(C_{2}+C_{X}\right) R_{\text {coil }}} \\
\Rightarrow C_{1} & =C_{2}+c_{X} \\
\Rightarrow C_{X} & =C_{1}-C_{2} \rightarrow \begin{array}{r}
\text { un hour capaci- } \\
\text { rance megqu- } \\
\text { resent using }
\end{array} \\
& =300 p f-2008 \mathrm{Q} \text {-unetert. } \\
& =200 \mathrm{PF}
\end{aligned}
$$

Que: A coil of texted with a
Q-meter and the self capacitance of the coil is found to be 820 pF . Resonance has occureed at a froespence of $10^{6} \frac{\mathrm{rad}}{\text { sear }}$, with a capacitance of $9.18 n \mathrm{~F}$. What is the inductance of the coil?
son $\quad \omega=10^{6} \frac{\mathrm{mag}}{\mathrm{sel}}, \quad c_{d}=820 \mathrm{pF}$

$$
\begin{aligned}
L & =\frac{1}{(2 \pi f)^{2}\left(c+c_{d}\right)}=\frac{1}{w^{2} \cdot\left(c+c_{d}\right)} \\
& =\frac{1}{\left(10^{6}\right)^{2} \cdot[9 \cdot 18 n f+820 \mu f)} \\
& =1.100 \mathrm{mH}
\end{aligned}
$$

Que:- A a-meter eff supplied with an of collator haring an untroip VOltage. while festive an untroworn coil the reading of Q-ratmeter cis 10 vole. Then the a - factor
of the \cos is -

Soln: $V_{\text {in }}=500 \mathrm{mV}, V_{\text {max }}=10 \mathrm{~V}$

$$
\begin{aligned}
\therefore Q=\frac{V_{c m a x}}{V_{i n}} & =\frac{10 \mathrm{volt}}{500 \mathrm{mv}} \\
& =20
\end{aligned}
$$

Que: The true value of alcoil c"s 245. and measured value os 244.5 Then the reatio of tuning capaCitance *on ckt to deistribused capacitance of coir is.
Sol:- $Q_{\text {qrue }}=245 \quad c_{d}=$ capa-
$Q_{\text {mear }}=244.5$ citance of test coil.

$$
\begin{aligned}
& c=\text { Tuning capa- } \\
& c / c d=\text { ? } \\
& Q_{\text {rrue }}=Q_{\text {measured }}\left[1+\frac{c_{d}}{c}\right] \\
& \Rightarrow 1+\frac{C_{d}}{C}=\frac{Q^{\text {True }}}{Q_{\text {measurved }}} \\
& \Rightarrow \frac{C \text { d }}{C}=\frac{Q_{\text {arue }}-Q_{\text {meap }}}{Q \text { trup }} \\
& \Rightarrow \quad c / c_{d}=\frac{Q^{\text {prie }}}{Q_{\text {true }}-Q_{\text {mas }}} \\
& =489
\end{aligned}
$$

Quer A $\cos ^{\circ} 1$ a Rescistance of 10.2 Z.es connected in direcet measurt. ment mode of Q-metere. Resonance occur with osccillator
frequency in $2 m+z$ and resonating capacitance is setat 65 pF . Then calculate the magni fude of $\%$ Ererore ere infreoduced ain meapurvement of a by cinsertion reseiftonce of $0-02$.
Soln: $f=1 \mathrm{mHz}, \quad c=65 \mathrm{pF}$

$$
\begin{aligned}
& f=1 \mathrm{mHz}, \quad C=65 \mathrm{r} \\
& R_{\text {copl }}=10 \Omega, \quad \pi=0.02 \Omega
\end{aligned}
$$

$\%$ erreor due to r

$$
\begin{aligned}
\% & =\frac{-r}{R_{\text {coel }}+r} \times 100 \% \\
= & -\frac{0.02 \Omega}{10 \Omega+0.02} \times 100 \% \\
& =-0.19 \% \\
\mid \% \text { Errare } / & =(0.2) \%
\end{aligned}
$$

Mote: If $r=0.05 \Omega$ and $R_{\text {coil }}=10.2$

$$
\begin{aligned}
+e^{\%} \text { If } r & =0.05 \Omega \\
\% \text { Erebr } & =\frac{-0.05 \Omega}{10 . L+0.05 \Omega} \times 100 \% \\
& =-0.49 \%
\end{aligned}
$$

Que: a 1001 cos tunced to resonance at 500 NH , with a_{r} Resonating cupacitance of 3 bfo. it 250 KHZ the resonance is op obtained weith a resionating cyaci of 106 PF . arat ins the self tane capacitance of the coil?

901: $\quad f_{1}=500 \mathrm{KHZ} \xrightarrow{\downarrow} f_{2}=250 \mathrm{kHz}$

$$
\begin{aligned}
& C_{1}=36 \mathrm{PF} \longrightarrow C_{2}=160 \mathrm{PF}
\end{aligned}
$$

aver A cocci co ifuned to reeve nance at $500, \mathrm{KHZ}$ with a resonating capacitance of 360 pF. \int when the fires. as rises to 1 mHz, the russonance is obtained at 72 pf.

Then calculate what is the distributed capacitance of the coil and also find the self conductance of the $\mathrm{coc}_{\mathrm{c}}^{\mathrm{c}}$
sol: $f_{1}=500 \mathrm{KHz} ; c_{1}=360 \mathrm{pF}$

$$
\begin{aligned}
f_{2} & =1 \mathrm{MHz} ; c_{2}=72 p F \\
\rightarrow n & =\frac{1 m H z}{500 K H z} \Rightarrow n \geq 2=f_{2} / \mathrm{s}_{1} \\
\Rightarrow c_{d} & =\frac{360 p F-(2)^{2} \cdot 72 p F}{(2)^{2}-1} c_{d}=\frac{c_{1}-n^{2} \cdot c_{2}}{n^{2}-1} \\
& =24 p F \\
\Rightarrow L & =\frac{1}{\left(2+f_{1}^{\prime}\right)^{2}\left[c_{1}+c_{d}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{(2 \pi \times 500 \mathrm{KHz})^{2} \cdot[360 \rho F+24 P F]} \\
& \Rightarrow L=0.264 \mathrm{mH}
\end{aligned}
$$

Quit A coil if tested with a ameter and self capacitance of the coil is found to be 24 pF . Resonance has occured at 500 with a capacitance of 360 pF . KHz the self inductance 360 pt. Then is self invetance of the coil
sol' ${ }^{\prime \prime} \quad L=0.264 \mathrm{~m} / \mathrm{t}$
Wee:- $c=$ for for firmamental frequency and $c=c_{2}$ for ind harmonic.: Then $\quad c_{d}=$?
son!- $c_{d}=\frac{c_{1}-4 . c_{2}}{3}$
Ind harmonic $=$ I st over Tone.
Ques Explain the working of a Q-metere. To fen g the self capace trance of a coir by the Q-mefere the resonance is obtained (1) Tuning appaciver of 1530 if at $10 / N_{2}$.
(2) Tuning capacity of 162 pF at 3 MHz .

Que: An unknown inductance Resonaxp at afres. of Imtiz with an exterenap capacitance of 210 PF and have $a=10^{\circ}$. If the fres. of the sourece sodoubp it is round that the tungng of capacifore mequire fore acesomed is 45 PF. Determine the values of the untrown indu. ctance and other components associated woth in the ckt.
SO1' $=$ principlepopern: Series Resonance Angt 10 PF .

$$
\begin{aligned}
& c_{d}=c_{1}-n^{2} e_{2} \text { ven } 2 \pi \sqrt{L(c+a d)} \rightarrow \# r e \\
& c_{d}=\frac{c_{1}-n^{2} R_{2}}{n^{2}-1}, L=\frac{1}{w^{2}\left(c+c_{d}\right)} . \quad \begin{array}{l}
\quad \rightarrow r \\
Q_{\text {trwe }}=Q_{\text {meas }}\left(1+\frac{r}{R_{c o z 1}}\right)
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& c_{x}=C_{1} c_{0} \xrightarrow[Q_{0}]{ } \nRightarrow c_{d} \\
& \text { (negregarse } \\
& =Q_{\text {meax. }}\left(1+\frac{c}{c}\right) \quad \therefore r<\left\langle<R_{\text {ceit }}\right) \\
& \% \text { Frrwere }=\frac{-c_{q}}{c+c_{\%}} \times 100
\end{aligned}
$$

CeR. O.

\Rightarrow C.R.O. is an electronic peak roltmetep (or) electron beam voltmeteris that works for both. A.C. Or and D.C. input. Basecally C.R.O. is a voltage sensitire instrument, which is nothing: but an imape. plottere That providies qraphiol representation varupous measurements Can be carried out using tire image displayed, on the \&ereeen of \because the $G \cdot R: O$.
\rightarrow A C.R.O. can be operated in oitioo y-t arode (ari) $x-y$ mode in in (4,me bape)
Y-A mode, the pasage of the sensed test figmal itselto arsplayex on the coreen know a\& yrt pelt. absere as in x in anodr, lessajous figex
are dersplayed on the screen (known as $\quad x-y$ p(ot.). woreking:

The Basic boildering blocks of C.R.O. ($2+0$) ancercercal varciver, Horeizonotal areiver, $\quad C \cdot R \cdot T$, (OaC) eleetron begen areeivare (3) and power supply
(1) vertical preiver:- provides a path fore test signal It provides
rogeh to reach ψ-i/p is senfed vising The test probe of of the orloscope terminals via a cable. drever riecereves -qignal as such as mest of the resesistance.
 $6 y$ rertio rise time are deceided
amplif eoren
i/p cquivatent, ckt. of CRO
\therefore The $\overline{\rho / p}$ impedance of CO is onthe ordere of MR.

$$
L \text { By adjuqieng " } \frac{\text { volt }}{\text { dive the uatere esen }}
$$

adjust the image of the ecesqay on the screxen i e. benced test sergal. can eithere be
attenuated
(ors) omplifiged
$\frac{\text { volt }}{\text { div }} \rightarrow y-\operatorname{consitivity~contren~}$

Gain can be contrelled. with thiss roaltor. -y-i/P of. C.R.T, evch, that it relay tere sensed signal foimultaneously (or) next to supep . siqmal.
Horizontal preiveri D_{0}^{-}It provisdee a late Gere eithen internally generatid suret signal any si,gnal to reach x-ip Of $C \cdot R \cdot T$.

Lan internal triggerceing the ofp of useretiol ampiticert is used as treoggeriping Gígnal. (A stimulus to generete $\begin{gathered}\text { funerp.) }\end{gathered}$
\Rightarrow The usere has to seleet point that comprcipeg of of is para-
arsters mely triages meters mamely triggere voltage level and triggere slope.
y preiggere voltage level (DConiy) canbe - Colcetted ap coptware ovolt, (or) tre;
 be seleitied as elther tre (risisg acole of toiggereing signal (tr)-ve [falloing sexde of triggering scignal. [falloing sede of pulse generatore companes ithe treiggering.
Withe coith preseleleted trigger pigigal wint $(T \cdot V . L, T . S)$ and generates a point (pulse whenever trespaerion trigare \quad pulse
negnal cocinceides segnal pocint.
\rightarrow UPOn reselieving

Ex: eaf, treigger. point is iovot, twe.

The sweep frequency can be adjup\%e by the user by adjusting " time"" $\frac{d i v e}{\text { " }}$ "
Time (Dvr) Base setting
\Longrightarrow In $Y-t$ mode, the internally generated applied is dreiven to $x-i p$.

$$
C, R-T \text { O }
$$

$$
\begin{aligned}
& \frac{\text { TIME }}{D I V} \rightarrow x \text {-scale Adjusting. } \\
& \text { sweep setting } \\
& \text { Line setting }
\end{aligned}
$$

ELECTRONIC
$C \cdot R \cdot T:-$

CRT is the heart of C.R.O. It
conses\& beam. generator and bests beam. generator at one end raspde with posphorous material. when the beam strikes the screen, visible light is produced due to phosphone excitation. The brightness of the image depends upon type of 3 faetere
(1) Type of phosphor coating
(2) speed of eleetreoin beam.
(3) Intensity (1) 5 the eleetren beam:-

IT It iss on e vacuated glass tube consisting vacuum various. element to agaerive the following function namely, beam generation, beam acceleration, Seam focusing, been deflection and beam target ir Deflection plate Assembly:-
A. TO tool no. Of 4 prates are available there, arranged as. two plates namely vertical deflecting pare of plates. (V.D.P) and horizontal deflecting pair of plates ($H \cdot D \cdot P$).
\rightarrow V.D.P. $\$$ are horizontally mountaine d \&position) prates. (ie. Top and bottom) that defelefteed electron beam verities
(up and down deflection.) (Y-vertilal:.

Bottom
\triangle HDD. PS are vertically mountained pie which deflect the rleotron beam horizontally. (Le ft, right)

$$
\begin{aligned}
& (x) \\
& \text { Horitizontal } \\
& \text { samal }
\end{aligned}
$$

\therefore No. of vertical defoleetions.

Deflection sensiterity It defines moot Of distance travelled by eketren beam due to appiced voltage.

$$
\begin{aligned}
& S=\frac{\text { Deflection voltage }}{\text { Applied amount of div (or) } \frac{\text { dem }}{\text { volt }}} \\
& \text { ie. "The alt }
\end{aligned}
$$

sensitivity
$S_{V}=$ Vertical deflection censitrity

$$
=\frac{y}{v_{Y}}
$$

$S_{H}=$ Horizontal defection sensitivity.

$$
=\frac{x}{v_{x}}
$$

Deflection factor:-
reciprocal of sensitivity is deflection factor.

$$
\begin{aligned}
\frac{1}{0.5 \frac{\text { volt }}{\operatorname{div}}} & \Rightarrow 2 \frac{\text { div }}{\mathrm{Nolt}} \\
& \Rightarrow e^{- \text {beam }}
\end{aligned}
$$

Ex:
$\Rightarrow e^{-}$beam well be deflected by - 2 divisions per. 1 unit deflecting voltage.
(X) DC voltages to Y and X i/ps:-

$$
\begin{aligned}
& \left.D_{F}=\frac{1}{s}\right] \text { in } \frac{1}{\left(\frac{d i v}{\text { volt })}\right.} \\
& \text { ide. } \frac{\text { volt }}{\text { div }} 1 \\
& \theta \\
& 0.5 \frac{\text { volt }}{\text { div }} \Rightarrow 0.5 \text { volts } \\
& \text { deflecting e-beam } \\
& \text { by } 12 \text { div. }
\end{aligned}
$$

(x) sensed Test signal to y ip: In eiterer y-t mode (ore) x-y mode the unknown test cabignal sensed using the prob se of the cable is driven to y-ip (ier) vertical i / p). consider e the test signal if sinusoidal.

Ex:

t	v_{y}
$t_{0}-0$	
t_{1}	$+2 v$
t_{2}	0
$t_{3}-2 v$	
t_{y}	-0

(vertical straight wine)
以 $1-\sin 3.14 t$ and $1 \frac{\mathrm{~cm}}{\text { volt }}$
$2 \sin 314 t$ and $\frac{2 \mathrm{~cm}}{\text { wort }}$

is

NOTE:- Any bipolar signal to $y-i / p$ proxies vertical straight Line.
External signal to x - ip:-
\longrightarrow In $x-Y$ mode of opera anyfignal (Knower applied by user via external horizontal \therefore ip is dresser to x - x^{2} / p of CRT. conses, the known external signal of sinusoid signal

(Horizontal straight Line.)
\longrightarrow Any bipolar signal applied to x-ip (via external Horizontal ils) produces terizontal straight. Line.
standard sweep signal to $x-i / p$ a
\rightarrow In Yore made of opera internal generated sweep signal. (sawtooth signal (ore) time Base signal or Ray (ore standard signal.) iss driven ts $x-c^{\circ} / P$.

the sweep" applied to $x-i / p$,
the spot (ire e-becm) is swept across screen of $C R O(L-R \quad L-R L-R \cdots \cdots)$

L to R ? Trace
R to L : ReTrace (or) flyback. calculation of f sweep:-

E NO +2volt.
-2 volt

(a) $\frac{1 \dot{d i s}}{d E V}=1$

$$
\begin{aligned}
T_{\text {sweep }} & =8 \text { Horiizontal dir } x \frac{\text { Irs }}{\operatorname{div}} \\
& =8 \mathrm{~ms} \\
\therefore f_{\text {sweep }} & =\frac{1}{8 m s}
\end{aligned}
$$

$$
\frac{\text { TIME }}{\text { DIV }} \downarrow \rightarrow \text { Tsweep } \downarrow \rightarrow \text { f sweep } \uparrow
$$

$y-t$ mode of operation o-
M isp signal: sensed test signal(unknown)

15

Amplitude variations of $y-i / P$ signal displayed on screen w.ret. time $Y-t$ plot

t^{t}	v_{x}	v_{Y}
t_{0}	$(-2 v)$	0
$t_{1}-(-1 v)$	$+2 v$	
$t_{2}+1+2 v$	0	
$\left.t_{3}+2 v\right)$		
t_{4}	$+2 v$	0

$$
\begin{aligned}
& f_{\text {signal }}=f_{\text {sweep }} \\
\Rightarrow & T_{\text {signal }}=T_{\text {sweep }}
\end{aligned}
$$

Measurements using Y t plot:-
(i) peak to peak voltage measurements:-

$$
V_{p-p}=N_{v} \times \frac{V O L T}{D I V}
$$

where, $V_{p-p}=p-p$ voltage of teat signal.
$N_{V}=$ Number of vertical divisions occupied between a peaks of test signal displayed.

$$
\frac{\text { VOLT }}{\text { DIV }}=\begin{array}{r}
\text {-scale control setting. } \\
\text { voltage measurement:- }
\end{array}
$$

(ii) peak, voltage measurement:-

$$
V_{p}=\frac{V_{p-p}}{2}
$$

where $V_{p}=$ peak voltage test Amplituale

* Vrems and $V_{d C}$ of tested on signal can alsobe measured, based on waveform.
(iii) TIME PERTOD MEASUREMENT:-

$$
T_{\text {signal }}=\underset{\text { percicgle }}{N_{H} \times \frac{T \text { Tine }}{d P V}}
$$

where,
$T_{\text {signal }}=$ Time period of test signal.
N_{H} pereycle $=$ No. of Horizontal deus. occur. by 1 cycleot tel signal n $_{d}$
dis played. dis played.

$$
\frac{\text { TIME }}{D I V}=x \text {-scale control setting }
$$

(iv) frequency measurement :-

$$
f_{\text {signal }}=\frac{1}{T_{\text {signal }}}
$$

20:-

$$
\begin{aligned}
& \frac{f_{\text {signal }}}{}=1 \\
& \text { fowerp }
\end{aligned}
$$

 $f_{\text {segnal }}=2 \times f_{\text {sweep }}$

 displayed.

$$
T_{\text {sweep }}=2 \cdot T_{\operatorname{signal}}
$$

Nogt: whatever be the portions of \bar{Y} itf kitial (rext signal) existing wimposed onto the screcen Sueep will be cuper no.0力 cycee of segnal diffrey of CRO, and the no ar atio of signal fres ${ }^{n}$ a on the gereen will be $=$ Ratio sweep frequency.
\rightarrow say, 'n'is no of cycles of serynal anspis,

$$
\begin{aligned}
& n=\frac{f_{\text {signal }}}{f_{\text {swerp }}}=\frac{\frac{1}{T_{\text {segnal }}}}{\frac{1}{T_{\text {sweep }}}} \\
& \Rightarrow n \Rightarrow \frac{T_{\text {sweep }}}{T_{\text {signal }}} \Rightarrow n=f_{\text {cergnal }} \times T_{w_{\text {weep }}}
\end{aligned}
$$

$$
\begin{aligned}
& n=\frac{T_{\text {scuerp }}}{T_{\text {segnal }}}=\frac{\text { Total } N_{H} \times \frac{T I M B}{n I V}}{N_{H} \text { per cycle } \times \frac{T I M E}{D I V}} \\
& \Rightarrow n=\frac{\text { Total } N_{H}}{} .
\end{aligned}
$$

$$
\therefore \Rightarrow n=\frac{\text { Totar NH }}{N_{H} \text { persycle }}
$$

$$
f \cdot \text { signal }=n \cdot f_{\text {sweup }}
$$

where $n \geqslant 1$

$$
\begin{array}{r}
\text { where } \\
\text { i.e. } f_{\text {signal }} \geqslant f_{\text {sweep }} \\
\begin{array}{r}
\text { symehronization } \\
\text { Relation }
\end{array} \\
\text { frepquency }=\text { sweel. frequ:. }
\end{array}
$$

Que.minimum segnal freequency $=$ sweep. frequ.
find the images displayed on the screen when an Analoy, single channel oscilloscope i° used to test a sinusoide signal. Conseder the below conditions, (i) frignail $=f_{\text {sweep }}$ (ii) $f_{\text {signal }}=2 \cdot f_{\text {suee }}$ (iii) $f_{\text {signe }}=$ 1.5 faver (iv) $f_{\text {sigral }}=\frac{3}{4} f_{\text {swerp }}$
prack the test signal, suepp signal asd omage de\&played on the screen
sol 10 . $f_{\text {segnal }}=f_{\text {cweep: }}$

(ii) fsegnal $_{\text {a }}=$ Lis siwer : :-

(־Same \quad seycles repeatedly displayeq y
(iii) fsegral $=1.5$ sucep:-

Different 1.5 cycles of sugnal
displayed ontur screan.

$X-Y$ Mode of operation:-
In this mode the sensed test signal is driven to y-ill an signal extern rally applied via external horizontal $i p p i \beta$ driven to $x-i / p$.

$$
\begin{aligned}
& \text { ip p is driven to } x-i / p \text { test signal } \\
& \longrightarrow \quad Y-i / p \text { signal - sensed tun n) } \\
& \text { (unknown) }
\end{aligned}
$$

x-ip signal:- external signal (known) Ω

$$
\begin{aligned}
\text { ie. } & v_{y}(t)=v_{y} \cdot \sin \left(2 \pi f_{y} t+\phi\right) \\
V_{x}(t) & =v_{x} \cdot \sin \left(2 \pi f_{x} t\right)
\end{aligned}
$$

where V_{Y} and V_{x} are amplituale of both signals. fy us vertical frequency.
f_{x} is horizontal frequency. ϕ is phase $v y(t)$ dibterence.

xy mode

$$
x-r \text { p\&ot }
$$

72. bascic meaturements canbe carreied out using Lissajious figurep:
(1) frequency measurement (fy)
(2) phase measureement (ϕ)

73 types of Lissajiou\% figumes. closed Loop, Lissajcous siguroos:-

open Loop Lessajcous figures:-

Mixed Lissajious Figuines:-

Note:-

\rightarrow There are. method fore this miogloye. mont namely (1) Tangent method: any
(2) intersection (method.
(1) Tangent Method:- fore given Lissajous Figures draw both horizontal and vertical tangent lines touching the pealtion.
Lissajous figure. Lissajous figure.
Count no. of peaks as touch by
both horizontal and vertical lines.
say,
$n_{x}=$ no. of peaks as touch by
horizontal tangent ins. $\begin{aligned} n_{y}= & \text { no. of peaks as touch by } \\ & \text { vertical tangent line. }\end{aligned}$ vertical tangent line.
Then,
$\frac{f_{y}}{f_{x}}=\frac{n_{x}}{n_{y}}$. frequency - patios measurement.

frequency measurement
unknown $=$ RATID known frequency frequency

Intersection Method:
for the given lissajious figure, draw both horizontal and vertical lines passing through: the lisisajious figure. Count no. of: cuts as made by both horizontal and vertical ines. say, $n_{x}=\begin{gathered}n^{n} \text {. of cuts as made by } \\ \text { hori zontal line. }\end{gathered}$
$n_{y}=n o .0 f$ cuts as made by vertical line.
\rightarrow Then,

$$
\begin{aligned}
& \frac{f_{y}}{f_{x}}=\frac{n_{x}}{n_{y}} \ldots \ldots \text { frequency measurement } \\
& f_{y}=\frac{n_{x}}{n_{y}} \times f_{x} \ldots . . \text { frequency } \\
& \text { measurement }
\end{aligned}
$$

NOTE:- Never drew a line via preexisting intersection.
 frequencies fy and f_{x} are applied to vertical and horizontal input of an oscilloscope. The below given Lissajous figure is observed on screen.

(i) calculate what is the Ratio of vertical frequency to horizontal frequency.
(2) what of the veretiocal frequency when horizontal frequency os 1000 Hz .

Sol": Touch Technique:-

$$
\xrightarrow{\text { Technique }} \begin{aligned}
n_{x} & =1+\frac{1}{2} \\
& =3 / 2
\end{aligned}
$$

\rightarrow Drew both horizontal and vertical tines touching the peaks.

$$
\begin{aligned}
& \text { touching the peaks: } \\
& \rightarrow \frac{f_{y}}{4}=\frac{n x}{n y}=\frac{3 / 2}{1}=3 / 2 \\
& \text { are. } f_{y}: f_{y} x=3: 2 \\
& f_{y}=3 / 2
\end{aligned}
$$

$n y=1$
cut rechneque:-

$n=N \cdot \operatorname{lot} c u t s b y$
vertical
$=2$ ane. $n_{x}=$ n 10.0 of cuts $b y$ Horizontal Line. $=3$

$$
\begin{aligned}
\frac{f_{y}}{f_{x}}=\frac{n x}{n y} & =3 / 2 \\
f_{y}: f_{x}=3: 2 & \Rightarrow f_{y}=\frac{3}{2} f_{x}
\end{aligned}
$$

phase measurement using Lissajous figures:consider, two sinusoidal signals having equal amplitudes in and equal freseruereses but differing in phase by in 9 or are applied to both

$$
\text { i.e. } \begin{aligned}
v_{y}(t) & =v \cdot \sin (2 \pi f t+\phi) \\
v_{x}(t) & =v \cdot \sin (2 \pi f t)
\end{aligned}
$$

$$
\phi=?
$$

CASE - I :-
equal amplitude $v_{y}=v_{x}, f_{y}=f_{x}$ and ${ }^{\prime}$ $\psi=0^{\circ}$ (on) 360°, are applied to both input?

$$
\begin{aligned}
& \text { of CRO. } \\
& \text { see. } \quad v y(t)=2 \cdot \sin 314 t \text { volt } \\
& \quad 2 \cdot \sin 314 t \text { volt }
\end{aligned}
$$ of CRO.

Diagonal straight Line

t	v_{x}	v_{y}
$t_{0}-0$	0	
$t_{1}+2 v$	$+2 v$	
$t_{2}+0$	0	
$t_{3}+(-2 v)$	$-(-2 v)$	
$t_{4}+0$	0	

$2 \cdot \sin 314 t$
NOTE- -

$$
\begin{aligned}
& v_{X}(t)=2 \cdot \sin 314 t \text { volt } \\
& \text { in -phase } \\
& \phi=0^{\circ}(\mathrm{OH}) 360^{\circ}
\end{aligned}
$$

CASE-2:- 2 sinusoidal \&ignals having
$v_{Y}=v_{X}, f_{y}=f_{x}$ and $\phi=180^{\circ}$ are apps to both Elps inputs of $C R O$ i

$$
\text { to both } \begin{aligned}
\text { bit. } v_{y}(t)= & 2 \cdot \sin \left(314 t+180^{\circ}\right) \\
& =-2 \cdot \sin (314 t) \text { volt } \\
v_{x}(t) & =2 \cdot \sin (3 / 4 t) v o 1 t
\end{aligned}
$$

t_{x}	v_{x}	v_{y}
$t_{0}-0-0$		
$t_{1}-2 v-(-2 v)$		
$t_{2}-0-0$		
$t_{3}-(-2 v)-+2 v$		
$t_{y}-0-0$		

out of phage

$$
\phi=180^{\circ}
$$

Diagonal straight line x-axis,
tire $x 5^{\circ}$. with making 135° with with -re x-axis. (ore) making

NOTE:-

L If LF $\left.L \phi_{4}\right]$ is frown (whine oi $\left\langle\psi_{x} \leq 90^{\circ}\right.$ and chemise to rotatish) then follow ion conclusions can be made.!
(i) LF $\left.L 180^{\circ}-\varphi \times\right]$ is mirror of $L F[\phi \times]$ rotation - ClKwise
(ii) LF $\left.L 180^{\circ}+\phi_{X}\right]$ is miresor of $L F\left[\phi_{X}\right]$ and rotation - Anticockuerse.
(iii) LF $\left[360^{\circ}-\phi_{X}\right]$ is same as $L \mathcal{F}\left[\phi_{X}\right]$ and rotation - Anticlockwise.

$0^{\circ}-180^{\circ}$: LF rotation in clockwise. $180^{\circ}-360^{\circ}$: LF rotation in Antilock wisps.
CASE 3:- 2 sinusoidal signals having $v_{Y}=v_{x}, f_{y}=f_{x}$ and $\phi=90^{\circ}$ are e applied to both inputs of $C R O$.

$$
\begin{aligned}
\text { cine. } v_{y}(t) & =2 \cdot \sin \left(314 t+90^{\circ}\right) \\
& =2 \cdot \cos 314 t \cdot v o t \\
v_{x}(t) & \left.=2 \sin ^{\sin (t)} 314 t\right) v 01 t
\end{aligned}
$$

NOTE: 0_{0}

$$
2 \cdot \cos 314 t
$$

Ellipse with
Yaxes as majori. axis.
CASE-4:- 2 sinvsoidal signalf having x-axis as majoraxis

$$
v_{V_{i}}=v_{x}
$$

, $f y=f x$ and $\phi=\Sigma 70^{\circ}$, are applies to both i/ps of $v_{(t)}$ CRO.
i/ps cercie Rotating Anticlociwest

Notes concluqions w.r.t. cores 1,2,3 an 4 :

fore any phase difference otherthan $0^{\circ}, 90^{\circ}$, $180^{\circ}, 270^{\circ}$ and 360°, the Lisajious figure e displayed on the screen wirlibe-. SOP:- Ellipse.
CASE-5: $=2$ sinusoidal signals having

$$
\begin{aligned}
& =2 \text { sinusoidal } 0^{\circ}<\phi_{x}<90^{\circ} \text {, } \\
& v_{y}=v_{x} ; f_{y}=f_{x} \text { and both cops of }
\end{aligned}
$$

are applied to both clips of Gro.

$$
\begin{aligned}
& \text { are applied } \\
& \text { ie. } v_{y}(t)=2 \cdot \sin \left(314 t+45^{\circ}\right) \\
& v_{v}(t) \text { ex } \sin 314 t
\end{aligned}
$$

$$
v_{x}(t) E 2 \cdot \sin 314 t
$$

\rightarrow for any given ellipse rotating in clrwise dire and haring onajor Axis in $28 t$ and 3 red quadrant. $\phi_{x}=\sin ^{-1}\left(\frac{y_{\text {in } t}}{y_{\text {max }}}\right) \quad \begin{aligned} & \text { (ort) } \\ & \sin ^{-1}\left(\frac{x \text { ont }}{x \max }\right)\end{aligned}$

C.R.O. PROBES:-The probe is a. connection onedium used for introducing the ep po in to the crit. under test. Basically therese are 2 types of probes. parsibe probes and Active probes, A passive probe \cdots consist of simple $R^{-i} \eta / \omega$ in the probe head. where as an active probe consists of circuitary that has active elements, like. Bor, op-amp and. FET.
High Impedance passive voltage probe:

Reef
${ }^{\text {eff }} \quad V_{S}=$ Test signal voltage.

$$
\begin{array}{ll}
V_{S}=T e s t & \text { voltage to cpo. } \\
V_{i}=I / P \quad \text { probe Rescestand }
\end{array}
$$

R_{p} and $C_{P} \rightarrow$ probe kescestance capacitand capacitance.
R_{i} and $C_{i} \rightarrow$ I/P resistance and caprecetance $\mathrm{C}_{\mathrm{C}} \longrightarrow$ cable capacitance (negligible.)

At Low frequencies o consider resistive Loading, $\quad v_{i}=V_{S} \times \frac{R_{i}}{R_{p}+R_{i}}$.

At High frequencies:-

$$
\begin{aligned}
& V_{i}=V_{S} \cdot \frac{\text { considered }}{X_{c i}} \frac{X_{c p}+X_{c i}}{X_{c}}=V_{S} \cdot \frac{\frac{1}{\omega c_{i}}}{\frac{1}{w c_{p}}+\frac{1}{w_{i}}} \\
& =V_{S} \cdot \frac{\frac{1}{\omega C l}}{\frac{c_{N}+c_{i}}{w c_{i} \cdot c_{p}}} \Rightarrow V_{i}=V_{S} \cdot \frac{c_{p}}{c_{p}+c_{i}}
\end{aligned}
$$

\rightarrow Attenuation factor at low frequency

$$
=\frac{R i}{R p+R i}
$$

Attenuation factor at high frequency

$$
=\frac{c p}{c p+c i}
$$

\therefore To Achieve same attenuation at as frequencies:-

$$
\begin{aligned}
& f r e q u e n c i \cdot c:- \\
& \frac{R_{i}}{R_{p}+R_{p}}=\frac{C_{p}}{C_{p}+C_{i}} \Rightarrow R_{i}\left(c_{p}+c_{i}\right)=c_{p}\left(R_{p}+R_{i}\right) \\
\Rightarrow & R_{i} \cdot C_{p}+R_{i} \cdot C_{i}=R_{p} \cdot c_{p}+R_{i} \cdot l_{p} \\
\Rightarrow & R_{i} \cdot C_{i}=R_{p} \cdot C_{p}
\end{aligned}
$$

Design cases 10 times Attenuation

$$
\begin{aligned}
& \text { Design cases } 10 \text { times Attend objective } \\
& \longrightarrow \frac{v_{i}}{v_{s}}=\frac{1}{10} \rightarrow \text { design }
\end{aligned}
$$

Que To achieve 10 times at tenuation what ore the values of $R p$ and $C p$ to be selected by the designere.
Sol's

$$
\begin{aligned}
& \text { by the designer. } \\
& \frac{V_{i}}{V_{s}}=\frac{C_{p}}{R_{p}+R_{i}}=\frac{c_{p}}{C_{p}+C_{i}}=\frac{1}{10} \\
& \Rightarrow \frac{R_{i}}{R_{p}+R_{i}}=\frac{1}{10} \Rightarrow R_{p}+R_{i}=10 \cdot R_{i} \\
& \frac{C_{p}}{C_{p}+c_{i}}=\frac{1}{10} \Rightarrow 10 \cdot c_{p}=C_{p}+c_{i} \\
& \Rightarrow C_{p}=c_{i}
\end{aligned}
$$

"inge" above probe 1" used by then what \therefore is the effective ip resistance, effective
i/p capacitance and v_{i}.
Cd io, Kef $=R_{p}$ in series with R_{i}

$$
=R_{p}+R_{i}=9 R \Gamma+R_{i}=10 R i
$$

LT i/p resistance increases by 10 times.

$$
\begin{aligned}
& =c_{p} \text { in series with } c_{i} \\
& =\frac{c_{p} \times c_{i}}{c_{p}+c_{i}}=\frac{\frac{c_{i}}{q} \times c_{i}}{\frac{c_{i}}{q}+c_{i}}=\frac{c_{i}^{2} / q}{10 \cdot c_{i} / q}=\frac{c_{i}}{0}
\end{aligned}
$$

$$
\begin{aligned}
c_{\text {eff }} & =c_{p} \text { in series with } c_{i} \\
& =c_{p} \times c_{0} \quad \frac{c_{i}}{9} \times
\end{aligned}
$$

input capacitance decreases by

$$
=\frac{c_{i}}{10^{\circ}}
$$ 10 times.

$$
10 \text { times } v_{i}=\frac{1}{10} \times v_{s} \Rightarrow V_{i}=0.1 v_{s}
$$

Signal is attenuated by 10 times.
\therefore This probe is known as 10 times pose.
(OR) $10 \times$ probe (OR) $10: 1$ probe:
Design case D^{-}Nimes Attenuation
Design criteria: selection of "R pend C_{p}. Valves

$$
\begin{array}{ll}
\frac{v_{i}}{V_{s}}=\frac{1}{N}, \quad R_{p}=(N-1) R_{i} L \\
c_{p}=\frac{c_{i}}{N-1} 1
\end{array}
$$

usert: $N: 1$ probe (ir) N times probe (∞)

$$
V_{i}=\frac{1}{N} \times V_{s} \Rightarrow, \quad \begin{aligned}
& \text { eff }
\end{aligned}=N \cdot R_{i}, C_{\text {elf }}=c_{i},
$$

$\longrightarrow 1: 1$ probe is a dircet probe which is simple test wire.
\rightarrow probes can alpo be classified ap voltage probes, current probes 4 logic probes.
\rightarrow Active probes are expensive, much bulky and require r exterenal source fore operation.
\rightarrow passive probes contreiA (compensate of probe) contain parallel $R C$ network.
CRT design Details:- Electrostatic
Electrostatic $\underset{\text { Beam deflection } \rightarrow \text { Bern }}{\text { Target }}$

$$
\angle \text { generator } \rightarrow\left|\left|\begin{array}{l}
\text { Bean focusing } \\
\leftarrow \text { Lens } \rightarrow
\end{array}\right|\right.
$$

(Brightness).
$\mathrm{H} \rightarrow \mathrm{H} \rightarrow a t \mathrm{er}$ filament, $\mathrm{K} \rightarrow$ cathode
 A_{1} - Lt accelerating anode (ore) pres accelerating anode A_{2} - Focusing Anode.
A_{3} - Ind Accelerating Anode.
V_{a} - Accelerating. Anode voltage.

$$
v_{x}=\sqrt{\frac{2 \cdot e \cdot v a}{m}}=\text { velocity of Accele- }
$$

$V \cdot D \cdot P d$ dimensions $\therefore L=$ Length of $V D P$.
$S=$ separation distance
bet ween VPPF.
$\therefore D=$ Distance bet ${ }^{n}$ VDpard. screen.
$d=$ Amount of vertical detection.
$V_{d}=$ deflecting signal voltage tteptsignal)

$$
\begin{aligned}
S_{V} & =\frac{d}{V_{d}} \\
& =\frac{L \cdot D}{2 S \cdot V_{a}}
\end{aligned} \quad \begin{array}{r}
\text { verse } \\
d
\end{array}
$$

vertical ion
deflection sensitivity
FDA \rightarrow post deflection Accelerating Anode (OR) Anode. Final Anode.
cathode is a Nickel cylinder, held by (ore) enclosed by control grid. When the heater heats the cathode indirectly electrons are evaporated firenm the metallic surface of cathode due to thermionic emission. These emitted electrons experience a repulsion. force from the inner cyerndeicy sidewall. of control grid. since greed voltage if highly (-re) wire. cathode, The repelled electrons emerge out of the pin hole of control grid as a beam.

The number of electrons in the beam ire. intensity can be adjusted by adjusting O are grid voltage.
Time bright hess of the image
(The brightness of the image. upon 3 tiaptores.ry on the screen depends upon 3 fractures. namely types of phophore costing given on the backside of screen, veloci\%y of reaction beam, and intensity (J of riectron beam. By adjusting grid voltage the intensity of beam and intern brightness or displayed eimaian bp adjusted by tie user. It us called intensity control.
\rightarrow Electro static focusing sense comprises of. A_{1}, A_{2}, and A_{3} also known at food Ring, the voltage applied to A_{1} and A_{3} is highly are (Anode voltage Va). \& As such Due to high potential difference A_{i} and C.G. the electron beam is immediately accelerates with veloce ty $\quad V_{x}$ towards the flense O and enters via the pine of A_{1}. In the sense the chectren beam experiences various forces, because of whichitguts complete diver out and then converged in to a
sharp beam. The sharpness of the beam. can be adjusted by adjusting Ag voltage focusing anode voltage in it in known as focus beam control. The velocity with which the en en enters the cense will be the same velocity with which cit leaves the cense. This electron beam aseelereted, focused electicon beam isthen deflected veretily up and down and horizontally left and ally right, due to the voltage β +(0) DPs and HDPS. This electron beam is once again accelerated with high velocity due to a very high (the) voltage applied attached to the screen. Design issue:-
$S_{V} \propto L \longrightarrow V D P s$ must be longer $\propto D \rightarrow \begin{array}{r}\text { Ups ave are plates. } \\ \text { Keptanay }\end{array}$ $S_{V}{ }^{\prime} \alpha \frac{1}{s} \rightarrow V p p s$ are kept close to each other. from the sericin. Sud $\alpha y_{v a \rightarrow}^{S} \rightarrow V a$ must be Kept Low,
\rightarrow To achieve High sensitivity,
But if V_{a} is Kept Low, then velocity of electron beam become $\operatorname{low}\left(: v_{x} \alpha \sqrt{v a}\right)$ and intern brightness of displayed comage become. less As que, to comprove bright ness e-beom is acecterated one more e tenne ie. post to deflection with the help of PDA.

ELECTRONIC MEA SUREMENT

$$
\begin{aligned}
& \text { Digcital voltmeters (DVMQ):- } \\
& \text { a voltage } \\
& \text { A DVM is truely } \\
& \text { The unlenown }
\end{aligned}
$$

measurering roltage (to be measuree for
is \int firrest convereted in to digertal form. (arith the help of
$A D C)$, and then displayed on a dergital readout. (Itconsipt ano. of seven segment digit.)
 $\underset{\substack{\text { Decimal } \\ \text { point }}}{L_{1}}$

$$
\begin{aligned}
& \begin{array}{l}
\text { 10v fullseale } \\
i^{i n}+\text { gegrating }
\end{array} \\
& \begin{array}{cc}
n & 2 \\
0 & 8 \\
0 & 2 \\
3 & 01
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
11 \\
\vdots \\
0
\end{array}
\end{aligned}
$$

Resolvtion of DVM: The smallest poscible incmemental change allow at the is/p voltage is known as Resolution of DVM. Resolution ơs notherg
gr but minipmum count (ore) one count (or) $24 t$ count where, $N=\frac{18 t s t}{N 0.0 t}$

$$
r=\frac{1}{10} \mathrm{~N}
$$ full digets.

$10^{N}=$ Basic scale, $r=$ scale pesplution. \rightarrow Requlution of DrM in selected voltage pange.

$$
r=\frac{1}{10^{\mathrm{N}}} \times \text { prange ' Roltage Rarge }
$$

sensitivety of DVM: The smallest measured in is inown voltage that voltage reange lowes sensitivity of DVM; i.e. mencomp as sensitu minimum (ounts ($10,5,(3)$) es sencortivety.

$$
S=\frac{1}{10^{N}} \times R_{L}
$$ Range.

Full Dergete:-

decimal posit.

$$
\begin{array}{ccccccc}
\frac{g}{9} \dot{e} d & c & b & \rightarrow & \operatorname{covNT} \\
0 & 1 & 1 & 1 & 1 & 1 & (0) \\
0 & 0 & 0 & 0 & 1 & 1 & 0
\end{array}
$$

$$
\text { Reset }=0
$$

minimum count $=1$; maximum count Total count $\beta=$ minimum count $=q$.

$$
\begin{aligned}
&=1+9=10 \text { count } \\
&=10 \text { steps ts } \\
&=10 \text { Total steps. } \\
&=\text { scale. }
\end{aligned}
$$

\rightarrow Read out Range (ore) count Range of a full digit iss from o to 9 .
\Rightarrow if doge th available means
y decade counters are aracir able.

Roll over of 3 digits

$$
\begin{array}{ccc}
\substack{\text { st } \\
\text { step } \\
9 \\
0} & 0 & 0 \\
0 & 0 & 2 \\
& \vdots & \\
0 & 0 & 9 \\
0 & 1 & 0 \\
0 & 1 & 1 \\
& \vdots & 1 \\
0 & 9 & 9 \\
1 & 0 & 0 \\
1 & 0 & 1 \\
& \ddots & \\
9 & 9 & 9
\end{array}
$$

\square The readout range (er) count range of 3 digit DVM is from 0 to 999.
M Reset $=000$

$$
\begin{aligned}
& \text { Min. count }=001-\lambda \text { count (or) } \\
& \text { iftstup } \\
& \text { Max } \cdot \text { count }=999 \\
& \text { Basic scale }=001+999 \text {. } \\
& =1000 \text { counts (ort) levin stay } \\
& =10^{3} \text { 刦eps. }
\end{aligned}
$$

II /p range switch (acoossabic to used) is mechanically ganges

Reading of 3 digit DVM ingroup

$$
\begin{aligned}
& \text { Range }=\frac{1}{20^{3}} x^{2} 2 \mathrm{volt} \\
&=\frac{1 \mathrm{dropt}}{10001+e p \%} \\
& \equiv 2 \mathrm{mv}
\end{aligned}
$$

$$
.001 \text { volt }
$$

$$
\Rightarrow \lambda m v
$$

A. Resolution of 3 digit DVM in

$$
\begin{aligned}
& \text { 10 volt Range }=0.01 \mathrm{~V} \\
& =\frac{1}{10^{3}} \times 10 \mathrm{~V}=10 \mathrm{mV} \\
& =\frac{10 \mathrm{~V}}{1000 \mathrm{steps}}=20 \mathrm{mv}
\end{aligned}
$$

4 reading of 3 digit DVAM in 100 V

$$
\begin{aligned}
\begin{aligned}
\text { Range } & =\frac{1}{10^{3}} \times 100 \mathrm{volt} \\
0.1 \mathrm{~V} & =\frac{100 \mathrm{volt}}{1000 \text { step }} \\
& =100 \mathrm{mv}
\end{aligned} .
\end{aligned}
$$

$$
\Rightarrow 00.1 \mathrm{~V}
$$

$$
\Rightarrow 100 \mathrm{mV}
$$

sensitivity of 3 digit DVM on a lowest range of operation. of i volt is —.
Son:

$$
\begin{aligned}
S & =r \times(R)_{L} \\
& =\frac{1}{10^{3}} \times 2 \text { volt }=1 \mathrm{mv}
\end{aligned}
$$

4 digit $\overline{\text { PM }}:=$

Roll over is
00000
$0001-\min (x t) \pi$
$\therefore \quad \therefore \quad 9: 9$-MAX
9 q. 9 range of a 4 digit DVM is
\rightarrow The count ret rom 0 to 9999.
from $\quad 10999=10,000$ steps
basic scale $=0001+$

$$
\begin{aligned}
& \text { o to } 9999 \\
& \text { scale }=0001+9999=10,000 \text { steps } \\
&=104 \text { steps } \\
&=104 \text { counts }
\end{aligned}
$$

The 4 digit DISPLAY is driven from a
Scale of 104 , counter consisting 4 decade counters cascaded.

$$
\begin{aligned}
& \rightarrow r=\frac{1}{104}=1: 10,000=0.0001 \\
& =\text { basic scalepesolution } \\
& r=0.0001
\end{aligned}
$$

Extension Digits:-
used fore extending
dB.
These digits and, the count range of
a N digit dB.

Errors in M.I. instrument:

ELECTRONIC MEASUREMENT
\rightarrow De.cional point (D.P) does not exist, for extension digit. As such when or, extension digit is attached (ft mozt sign: (recant position ms), new voltage range c's not added. But, the existing volta ranges are extended.

$$
\begin{aligned}
& \text { spec: } \frac{x}{Y} \text { digit } \quad \begin{array}{l}
\text { where } x=\text { MAX. } \\
Y=\text { Total count } \beta \\
* y \text { is the range } m
\end{array}
\end{aligned}
$$

(*y is the range multopiyerg
factor.) minimum

* By attaching an extension digit,
* count, resolution, sensitivity, minimum voltage (ore) unaltered. where e as count range, maximum count, maximum voltage are. unaltered.

Ex:

$\frac{1}{2}$ digit displays cither 0 (or) 1 .
(x) $3 \frac{1}{2}$ digit DVM:-

\rightarrow Roll over e:

1. \rightarrow The count range if of $3 \frac{1}{2}$ digit Dim.

$$
\begin{aligned}
& \text { cis frow o to } 1999 . \\
& \rightarrow \text { Repeat value - 0000 } \\
& \text { MIN COUNT-OOO1 } \rightarrow \text { COUnt (ore) } \\
& \text { Resolution } \\
& \text { MAX COUNT - } 1999 \\
& \rightarrow \text { scale }=0001+1999 \\
& \text { * extended }=2000 \text { steps. (or) } 2000 \text { county. } \\
& \text { scale. }=2 \times 10^{3} \text { steps. } \\
& r=\frac{1}{10^{4}}=\frac{1}{10^{3}}=0.00 .2
\end{aligned}
$$

means hals digit es turenedon.
\rightarrow Resolution of $3 \frac{1}{2}$ digit $D \mathrm{Vm}$ in 2 V range is

$$
=\frac{2 \mathrm{v}}{2000 \text { steps }}=\frac{1 \mathrm{v}}{1000 \text { steps }}=1 \mathrm{mv}
$$

\rightarrow Resolution of $3 \frac{1}{2}$ digit DVM range if

$$
=\frac{1}{2 \times 10^{3}} \times 20 \mathrm{volt}=\frac{1}{10^{3}} \times 10 \mathrm{volt}=10 \mathrm{mV}
$$

(x) $3 \frac{3}{4}$ digit pron:-

$$
\longrightarrow \begin{array}{cc}
0 & 000 \text {-reset } \\
0001 \text {-min. }
\end{array}
$$

$$
3.999-\text { mAX }
$$

\rightarrow The count range of $3 \frac{3}{4}$ digit of DVM is from o to 3999 .

$$
\begin{aligned}
& \text { Extended scale }=0001+3999 \\
&=4000=4 \times 10^{3} \text { steps } \\
& r=\frac{1}{10}=0: 001
\end{aligned}
$$

\rightarrow Resolution (r) in $\perp v$ range $=\frac{1}{10^{3}} \times \therefore \mathrm{V}$

$$
\text { re in } 4 v \text { range (ore) }=\frac{1}{4 \times 10^{3}} \times 4 \text { volt }=1 \mathrm{mv}
$$

0.001 volt $\Rightarrow 1 \mathrm{mV}$

AV: $\Rightarrow 0.001$ volt to 3.999 volt \Rightarrow if Volt $10 \mathrm{~V}: \Rightarrow 00.01$ volt to 39.99 volt $\Rightarrow 40 \mathrm{volt}$ $100 \mathrm{~V}: \Rightarrow 000 \cdot \mathrm{~d}$ volt to $399.9 \mathrm{volt} \Rightarrow 400 \mathrm{volt}$
(x) RANP TYPE DVM:-
principle of operation:- The unknown analog $D C$. principle os measured by measuring the voltage is by alinearly falling ramp from time taken by aline revel to zereo unknown voltage revel
volt $\%$.

Electronic comparer (for time miegpurcue mont)

where, Tref \equiv Reference voltage
$V_{m}=$ unknown analog de voltage.
$t_{r}=$ Time taken by Ramp to fall from Vref to ovolt.
$\begin{aligned} t_{m}= & \text { Time taken by pomp to fall from } \\ & v_{m} \text { to o volt? }\end{aligned}$

$$
\left(* t_{m}=t_{2}-t_{1}\right)
$$

This iss known as Astr coincide en 1) t will be detected by cop co, comparator e that generates start pulse.
ज At ty the ramp vortage.(Vramp) coincides with zero volt.
This cis known as and coincidence, it will be detercited by ground. comparator e. its such the and comparators. generates fansing/\&trop pulse at to.
$\rightarrow \operatorname{tm}_{\sim}$ is tim' taken to give v_{m} ie.

(v) \rightarrow

$$
\begin{align*}
& t_{r e}>V_{\text {rie }} \\
& t_{m} \rightarrow v_{m} \\
& \therefore V_{m}=\frac{V_{\text {ref }}}{t_{r e r}} \times t_{m} \tag{1}
\end{align*}
$$

1 tcis Meetron $c^{\circ} c$ countere. (ore) frequency counter.
Time measuremert using Electronic couiter:que aATE timer is Ton i.e gate es open for a duration of Tm. n no. of alk pulses arre countred inthatt duretion.

* GATE wwitch "s OPEN meani, gATE i\% closoo
"CLOSED ",
" TDEN.
I, ") CLOSEA
"
* 'n' cik polses are counted is a duration of tm.

$$
\therefore t_{m}=\prod_{\begin{array}{c}
\text { Accumbleted count } \\
\text { coun pulse }
\end{array}}^{\text {duration. }}
$$

putting in er r^{n}-(1),

$$
\begin{aligned}
V_{m} & =\frac{v_{\text {res }}}{v \operatorname{tre}} \times \operatorname{tm} \\
& =\frac{V_{\text {res }}}{t_{r e}} \times n \times t_{c k} \\
\Rightarrow V_{m} & =\left[\frac{V_{\text {ref }}}{t_{r e}} \times t_{c k}\right] \times n
\end{aligned}
$$

unknown analog de voltage to hoe measured $=$ slope x clock pulse welt. X Accumulated count. $=\frac{\text { slope }}{\text { oscellatore freq, }} \times$ accumulated count.
\rightarrow The measurement accuracy of a Ramp type DVM is pore: $B C Z$ there iss adependeray on R 䧑, c, and t lock:
H The main error esourele is the: linearity of the source.
LIt any AC signal is superimposed on $D C$ voltage to be measured then a large error are introduced in to measurement. As such noise rejection of this DVM. "es poor. In term the stability of this DVM is alpo poor since this is not stable when used in nocisy condition (ort)noise environment.

Inteqrator :

$\therefore V_{0}=-V_{C}$.

$$
\begin{aligned}
& T_{1}=\text { Integration Time } \\
& \text { pariod } \\
&=0 \text { to } t_{1} .
\end{aligned}
$$

(i) $V_{C 1}=\frac{V_{e n}}{R C}\left[t_{1}-0\right]$

$$
=\frac{V i n}{R C} T_{1}
$$

$$
\therefore V_{0_{1}}=-\frac{V_{i n}}{R C} T_{1}
$$

DUAL SLOPE INTEGRATFNG TYPE DVM:-
\rightarrow Ltis the preinciple of voltage to ter converter.
$1 \rightarrow$ This DVA measumes the
de voltage by chargoing a capacifores
with then dirs. charging fixed. curerent.

Operation:- At $t=0$, the DVM is connected to the unknown analog $D C$ roltage ${ }^{(r m}$ brow ing the user manvally by throweing the surts starts charging and roltage acerest capacitore (tvedy) reitis, the co/p of the $\mathrm{c}^{2 n+e g r a t a r e ~(-v e l y ~}$ reises. since theree is $1 \Delta t$ zero crosseng of v occures at $t=0$ est selb. the z.C.D. generatie ztakt
pulse. This pulse opens the gate and sinters the clk.pulsep produced by oscillator e and are allow to reach tooth counters. country starts from $t=0$ on wards. As eapal integrating. capacitors charges (worth variable current) the counting cos continued till the counter reaches $c^{\prime \prime}$'s maximum count and reset. ie. crervespective of magnitude $>0 / f$ voltage being measured. the counter is always allowed to counted. NP to it's maximum. say, at ty, the.. counter overflows (ore) or that generates overcillow pulse which cs Feedback to the esp side and changer the switch position from Um, to -Vies, automatically. This makes the capacitor to dis charge as the ip current is reverend but have no effect on GATE. AS

- the gate cis ftcill open the courter restarts from t_{1} on wards. This canting is continued $+i l l$, capacitor alisabarize completely. say at t_{2} capacitor wis $^{\circ}$ completely discharged lend the of of integrator becomes 0 . Thees $2 n$ o zero crossing. of v_{0} (occuring at t_{2}) generates $2.6 \cdot 0$ the te generate. stop free pulse that closes the Gives. SO. counting stares at taps.

Relation between 'n' and V_{M} :-

$$
\begin{align*}
& O / p \text { of integration } \\
& v_{00}=0-(\rightarrow 18 t \overline{z C}) \\
& v_{0}=\frac{-1}{R C} \int_{-\infty}^{t_{1}} v_{m} \cdot d t \\
& v_{0}=-\frac{1}{R C} \int_{0}^{t_{1}} v_{m} \cdot d t[\because \text { no initial } \\
& \text { voltage }] \\
& v_{01}=-\frac{V_{m}}{R C}[t]_{0}^{t_{1}} \\
& =\frac{-V_{m}}{R C}\left[t_{1}-0\right] \tag{3}\\
& v_{01}=\frac{-V_{m}}{R \cdot C} T_{1}
\end{align*}
$$

$$
\begin{aligned}
& t_{1}<t<t_{2} \\
& \text { At } \quad t=t_{2} \\
& \Rightarrow \frac{V_{\pi y f}}{T_{1}}=\frac{V_{m}}{T_{2}} \\
& \begin{aligned}
V_{0} & =\frac{-1}{R C} \int_{-\infty}^{t_{2}}\left(-V_{\text {res }}\right) \cdot d t \\
& =\frac{V_{\text {ref }}}{R \cdot C} \int_{0}^{t_{2}} d t \\
& =v_{01}+\frac{1}{R C} \int_{t_{1}}^{t_{2}} V_{\text {ref }} \cdot d t
\end{aligned} \\
& V_{00}=0 \cdots(\cdots \text { end z.c.) } \\
& V_{01}+\frac{V \text { rex }}{R C}\left(t_{2}-t_{1}\right)=0 \\
& \frac{-V_{m}}{R C} T_{1}+\frac{V_{\text {ref }}}{R C} T_{2}=0 \\
& \frac{V_{m}}{R C} T_{1}=\frac{V_{\pi r s}}{R C} T_{2} \\
& \Rightarrow V_{m}=V_{\text {ref }} \cdot \frac{T_{2}}{T_{1}} \\
& \Rightarrow V_{m}=V_{\text {cerf }} \times \frac{n \times \frac{1}{t}+1 k}{N_{F} \times \operatorname{tcik}} \\
& =V_{\text {ref }} \times \frac{n}{N_{F}} \\
& \Rightarrow V_{m}=\left(\frac{V_{\text {ref }}}{N_{f}}\right) X_{x} n
\end{aligned}
$$

$$
\begin{aligned}
& \text { Hene Ex }=0.2 \text { volt galvanomer. } \\
& \text { cuocrent will } 100 \mathrm{l} \text {, }
\end{aligned}
$$

Electronice Em meapurement".-
where $T_{1}=27 t$ integreation tione perioy. (fived)

$$
T_{2}=2 n d .
$$

(ore) time period.
Deintegration timer Vareishe

* During $T_{1} \div V_{m}$ i\& integrated, capacitore charges with variable cupto count unt $\frac{V_{m}}{R}$. Counter count upto MAX count slope is variable, Vree is integrated capaciitor
* During T_{2} :- Vref whargep. with fixed current dischargep counter counts up to $\frac{\text { Vresf counts }}{R}$

$$
\begin{aligned}
& I_{\omega}=\frac{3.2}{200+200+2800} \\
& 1 \mathrm{MA} \times 2.00 \mathrm{~N}=20.2 \mathrm{volt}^{2} \text { thene iseno } \\
& \text { Hece. Exx }=0.2 \text { Volt on galvanometere. }
\end{aligned}
$$

Conversion Time.:-

$$
\begin{aligned}
t_{\text {conv }} & =\text { start to plop pure } \\
& =0 \text { to ty } \\
& =0 t_{0} t_{1}+t_{1} \text { to } t_{2} \\
t_{\text {conv }} & =T_{1}+T_{2}
\end{aligned}
$$

$$
=N_{f} \cdot t_{c, k}+n \cdot t_{01 k}
$$

$$
t_{\text {conk }}=\left(N_{F}+n\right) \cdot t_{c c k}
$$

Note: maximum (conversion time when $n=N_{F}$. Note:- $N F=10^{\mathrm{N}} \cdots$ A digit DVM

$$
\begin{aligned}
& =10^{n} \quad n \text { bit A/D converter. } \\
& =2^{n} \cdots \quad \text { the counter }
\end{aligned}
$$

The measurement accuracy of the dual slope type is high since W there is no dependency on R, c, tclock

Measured value:-

$$
\frac{\text { vied }}{\left|v_{0}\right|}=\frac{\text { value:- }}{\frac{1}{R C} \int_{0} v_{m} \cdot d t \quad \text { If } T_{1}=R C}
$$

then, $\left|V_{0}\right|=\frac{1}{T_{1}} \int_{0}^{t_{1}} v_{m} \cdot d t \rightarrow$ Trave avg. value of Vm .
\therefore Dual slope integrate ing type $\Delta V m$ measures tree average value of V_{m}.
x input
measure value cis Avg vale
\qquad

\rightarrow Any AC signal (or) noise as present on the dC voltage to be measures will be rejected since the dual Hope type design integrates the analog voltage to be measured bora fixed tenne period.
where

$$
T_{1}=1 \text { st integration time period. }
$$

$T_{S}=$ Time period of sinusoidal component reeding. on D ed voltage to be measured.
minimum integration

$$
\begin{aligned}
& 1 \times T_{5}-m \text { minim integration } \\
& 2 \times T \mathrm{~T}
\end{aligned}
$$

$$
10 \times \mathrm{Ts}
$$

* ctabilšty: Dual slope n nitgrat has highest noise reject stability since.
conclusion o Dual slope integrating type orin is the most widely used DVM because of $c^{2}+\beta$ highest
noise repection, hoghest stabirity (But it is the flowest DVM.)
Queir A digital roltmeter has a $4 \frac{1}{2}$ digen't digpay. rille ivolt reange can read up to ...
$501^{n 0} \mathrm{C}_{-}^{-}$

Que: what is the reading of 0.5245 vort an ivolt range in $4 \frac{1}{2}$ digit voltmeser dispprayead as (i) In 1 oovolt range as -? SO1: $\quad V_{m}=0.5245 \mathrm{volt}$ by $4 \frac{1}{2} \mathrm{DVM}$ iv range: $\frac{0}{\prod_{\text {ivolt }}} \geq 45$ volt 100 V range: $000-5$
\qquad
Que:- Asserction:- The Resolution of $3 \frac{1}{2}$ ovm if 0.001 adition of $\frac{1}{2}$ digitt a
Reaton:- Adreita degital the axt meter. mangle of Aeseretsert grues wecoson! True. Bot ${ }^{-1} R^{\text {, is not conercot erpianationos Assy- }}$
ves what is the rangle for a $3 \frac{1}{2}$ dis ital, metere?

Soln oto 1 q q 2
Que? A 4 digert prm with a have a sensitiritty th'e presolution of thi" β DVm cis 0.0001
(a) 0.1 mv
(c) 1.0 mV
(b) 0.01 mv
(d) 10 mV

Soln) 4 dige't $O V M ; R_{L}=100 \mathrm{mr}$

$$
\begin{aligned}
r= & 0.0001 \\
s= & r \times(R L) \\
= & =\frac{1}{10^{4}} \times 100 \mathrm{mV}=0.0001 \times 100 \mathrm{mv} \\
& =0.01 \mathrm{mv}
\end{aligned}
$$

x -
Ques= A $3 \frac{1}{2}$ diget roltmetere having a
used to measure

$$
\text { volt of } \quad \text {. }
$$

sei:-

$$
3 \frac{1}{2} \text { DVM, } r=100 \mathrm{mV}
$$

$$
\left.\begin{aligned}
& r=\frac{1}{\text { extended scale }} \times \text { extended voltage } \\
& \text { Range }
\end{aligned} \right\rvert\,
$$

Que: what ic the xreselvtion of $2 \frac{1}{2}$ digit dippplay DVM for 0 to A volt ronge, what is the the revelution on
(10)volt range.
(10) volt range.

Soil:- Given that: $3 \frac{1}{2}$ digit DVM
sponges: o-2volt, D-20 volt
\rightarrow we know, $r=\frac{1}{\text { scale }} \times$ Range
$\rightarrow 0-2$ volt Range:

0-10 volt Range:-

$$
r=\frac{1}{2 \times 10^{3}} \times 2 \mathrm{v}=\frac{2 \mathrm{volt}}{2000 \text { counts }}
$$

$$
=\frac{1 \text { volt }}{1000 \text { count } f}
$$

$$
r=\frac{1}{2 \times 10^{3}} \times 20 \mathrm{~V} \quad=2 \mathrm{mV}
$$

$$
=\frac{20 \mathrm{~V}}{2000 \text { counts }}=\frac{10 \mathrm{~V}}{1000 \text { counts }}
$$

$$
=10 \mathrm{mv}
$$

Que:- A DVM has a readout range from \sim, to 9999 count s
The Resolution of this instrument fore the toul scale reading 9.999Nolt.

So10- count range: o to 9999

$$
\Rightarrow 4 \text { digits }
$$

FSV:9.999.v
$\therefore \pi$ ob 4 digest DVM in 10 V range

$$
=\frac{1}{10^{4}} \times 10 \mathrm{~V}=\frac{1}{10^{3}} \text { volt }
$$

(ore $\quad 0.001 \mathrm{v}) \rightarrow 2 \mathrm{mv}$

Que：
A Voltage
as－by a $3 \frac{1}{2}$ digit
weill dote 100 volt range，of opere？：
（a）can not bemeapured
（b）
son： 014.5 volt
Que：－A $4 \frac{1}{2}$ digit $\begin{aligned} & \text { DVM } \\ & \text { as }\end{aligned} \quad 0.2 \%$ the regent
specification ats is a DG Voltage Last pup 10 count a its 200 V full scale． if 100 V is read on that can expected is－． The maxerroor thation： 0.2% of reading t Sol：Accuracy specification． 10 counts．

$$
\rightarrow 4 \frac{1}{2} \text { digite日位草 }
$$

-100 volt reading by $\left.\begin{array}{l}4 \frac{1}{2} \text { digit DVM } \\ \text { in vo volt range }\end{array}\right\} \begin{aligned} & 100000 \\ & \begin{array}{l}200 \mathrm{~V} \\ \text { range }\end{array}\end{aligned}$

$$
\begin{aligned}
& \therefore 10 \text { counts }=10 \times 000.01 \mathrm{Volt} \\
& =10 \times 0.01 \mathrm{~V} \\
& =10.1 \text { volt } \\
& \therefore \text { error }=\frac{0.2}{100} \times 100 \mathrm{volt}+0.1 \mathrm{v} \\
& =0.2 \mathrm{Volt}+0.1 \mathrm{Volt} \\
& =0.3 \mathrm{rolt}
\end{aligned}
$$

\rightarrow meading of 100 Ereolt $=\frac{0.3 v 01 t}{100 v 01 t} \times 100 \%$

$$
=0.3 \%
$$

$[x$ Note: 000.00 V

$$
\begin{aligned}
& 000.01 \mathrm{~V} \\
& 000.02 \mathrm{~V}
\end{aligned}
$$

counts

Que:- A $3 \frac{1}{2}$ digit $D V M$ "hal. an accureacy of $\pm 0.5 \%$ of reading $+\lambda$ digct). The possible errore in volt is . when the instrevment 5 volts on the 10 volt reange.
$801^{n o}$

$$
\begin{aligned}
& 3 \frac{1}{2} \text { DVM } \\
& +(0.5 \% \text { of reading }+ \text { diget })
\end{aligned}
$$

$$
3 \frac{1}{2} \text { DVM }
$$

reading $=5$ volt on povolt pange.
50170

$$
\begin{aligned}
& = \pm\left[\frac{0.5}{100} \times 5 \mathrm{v}+0.01 \mathrm{v}\right]= \pm \begin{array}{l}
10 \mathrm{v} \text { range } 10 \mathrm{v} \text { range } 10.025 \mathrm{~V}+0.9 \mathrm{~V}]
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { [* Note: } \\
& \text { ererore }=\frac{0.2}{1000} \times 100.00 \text { vopt }+ \\
& 10 \times 000.01 \text { volt } \\
& =\frac{0.2}{100} \times 100 \mathrm{V016}+10 \times 0.01 \mathrm{~V} \\
& \text { c.2. vollt + } 0.1 \text { voit }
\end{aligned}
$$

$$
= \pm[0.035 \mathrm{volt}]
$$

Que:- In a digital voltmeter the osceym, The Ramp frequency ours you KHz to volts. in voltage falls from no.05 pulses counted Io ms. The max. no.05 pusey by this inV is.
LO12 Note:-

$$
v_{m}=v_{\text {reef }} \times \text { toll } \times \eta=
$$

If $\quad v_{m}=v_{\text {ref }} \Rightarrow t_{m}=\operatorname{tri}$
Then max. no of pulses counted

$$
\begin{aligned}
& \max \\
& \therefore V_{\text {ref }}=\frac{V_{r u e}}{t_{r}} \times t_{c k i} \times n_{\text {max }} \\
& \Rightarrow n_{\text {max }}=\frac{t_{r}}{t_{G 1 k}}=t_{r} \times t_{c / k}
\end{aligned}
$$

$$
\begin{aligned}
& \text { \&V } \underbrace{V_{\text {ref }}}_{\text {or }}=V_{\text {mana }} \\
& \begin{aligned}
20 \mathrm{MS} & =n \times t_{\text {ck }} \\
t & =n \times \frac{1}{f_{\text {oscillator }}}
\end{aligned} \\
& n_{\text {max }}=20 \mathrm{~ms} \times 400 \mathrm{KHz}
\end{aligned}
$$

$$
\begin{aligned}
& =8000 \text { pulses }
\end{aligned}
$$

Note:-

$$
400 \times 10^{3} \frac{\text { pulse }}{\mathrm{sec}}
$$

$1 \sec$ \qquad 400×10^{3} pulse $20 \mathrm{~m} \mathrm{sec} \rightarrow$?

$$
\begin{aligned}
& \sec \rightarrow ? \\
&= \frac{20 \mathrm{~ms} \times 400 \times 10^{3} \text { pulse }}{2} \\
&= 8000 \text { pulses } \\
& \text { pampty pe bDrm }
\end{aligned}
$$

Que:- The process. and "slope of s on
(ब) fret of generator Re Ramp.
(b) 11
(c) Slope of the Romp.
(d) switching tom ie of gate.

Que: In a peal slope 1 integrating type DVM If t integration iss carried out A frore Io periods ab supply free q. Sollz. The pe Vest $=2$ volt, Then the total conversion time for? Then the voltage of droit cis -

SO 1"

$$
\begin{aligned}
T_{1} & =10 \text { periods of ts } s=50 \mathrm{~Hz} \\
& =10 \times \frac{1}{50 \mathrm{~Hz}}=1 \quad \mathrm{~ms} \\
& =10 \times 20 \mathrm{~ms} \\
& =0.2 \mathrm{~second}
\end{aligned}
$$

$$
V_{\text {ref }}=2 \text { volt and } V_{m}=\lambda \text { volt }
$$

$$
\begin{aligned}
& \therefore t_{\text {con }}=T_{1}+T_{2} \\
& \frac{V_{\text {ref }}}{T_{1}}=\frac{V_{m}}{T_{2}}=\frac{V_{m}}{V_{\text {ref }}} \times T_{1} \\
&=\frac{1 V}{2 V} \times 0.2 \text { second } \\
&=\frac{1}{2} \times 0.2 \text { second } \\
&=0.2 \text { second } \\
& \because T_{m}= \\
&=0.2 .5+0.15
\end{aligned}
$$

$$
=0.3 \mathrm{sec}
$$

Que:- withe Block diagram explain the function of a dual slope DVM. A dual type DVM has an of $0.2 \mu F$ and resistance of 100 KLR . The Vref $=2$ volt and the op of integrator calculate the maximum time for sutegreator calculate the can be int grated.
Then pres or ch
which
Soling. Verefer 2 Volt

$$
\begin{aligned}
\text { Vier } & =20 \mathrm{k}, 2, \quad C=0.1 \mu \mathrm{~F} \\
R & =100 \mathrm{k} \\
\left|V_{\text {max }}\right| & =10 \mathrm{volt}
\end{aligned}
$$

$$
\left|V_{0}\right|=\frac{V_{m}}{R C} T_{1}
$$

where $T_{2 \text { max }}=T_{1} V_{\text {occurs }}$ if $V_{\text {max }}=V_{\text {mi s }}$

$$
\begin{aligned}
& \therefore\left|V_{\text {max }}\right|=\frac{V_{\text {rems }}}{R \cdot C} \times T_{2 \text { max }} \\
& \Rightarrow T_{2 \text { max }}=\frac{\mid V_{0} \text { max } \mid}{V_{\text {ref }}} \times R C \\
& =\frac{1 \text { lomax } /}{(\text { pres } / \mathrm{R} \cdot \mathrm{c})}=\frac{10 \mathrm{valt}}{\left(\frac{2 v}{1 \text { oms }}\right)}
\end{aligned}
$$

Quen A $3 \frac{1}{2}$ digit, 2 volt fullscale drop slope DVM is used to measume a teme varying voltage $v(t)=(1+1 \cdot \sin 314 t)$ vort. Then the DVM indicate \qquad .

2012:-

$$
v(t)=1+\cos 314 t \quad \text { rolt metent }
$$

- PMMC roltmeture reading PM. I. voltmetere reecoding

$$
\begin{aligned}
& \text { readeing }=1 \text { volt } \\
& =1.000 \text { rolt }
\end{aligned}
$$

Queg $A 3 \frac{1}{2}$ degit with 200 mv fullscak digital woltmeter hap an accuracy foccification of $\pm(0.5 \%$ of reading +5 count). Df phe meter reads 100 mv , the voltage being oneasured esp —.
(a) Any value bet ? 99.5 mv and
(b) Exactly 99.5 mv
(c) Any value bet? $99: 0 \mathrm{mV}$ and 101.0 mV . (d) Exactily 100 mv .

CO1":- $3 \frac{1}{2}$ digit DVM, 100 mv reeading on 200 mv . ACCurate sperificateon: $-[0.5 \%$ of reading plus 5

$$
\begin{aligned}
= & \frac{0.5}{100} \times 100 \mathrm{mv}+5 \times 0.1 \mathrm{mv} \\
& = \pm(0.5 \mathrm{mv}+0.5 \mathrm{mv})= \pm(1 \mathrm{mv}) \\
\Rightarrow v_{m} & =100 \mathrm{mv} \pm 2 \mathrm{mv} \cong 99 \mathrm{mv} \text { to } 202 \mathrm{mv}
\end{aligned}
$$

Quei over renging cin ovN cimplies that,
(a) aull full degutes arre puitched ond.
(a) $\frac{1}{2} d i g i t /$ isse fwitched onl.
(c) N. 'rull dipgit β arve Ewitched of'f.
(a) 999.5 (b) 1.7?7
(c) 5.929 sotis 1.999
Que\% A dual alopex A to D conventer ux. A a Dobit counter when the sipserale serated the is a.110wed
(a) 2_{2}^{N} (b) 2 Nat

Qupi Diqital measurim. conftrewerest following 3 types. A/D convereticr
(1)

1) Ual clope.
(2) cochter type:

The eormest epquence Fore these converen in deereascing ordere of thele kperf sin fil flas type (saqtest) integrating Type.
(1) Successive Approx type
(nuest (3) Counter Type. (4) Ramp typel. (G) Dual slope type.

Integrating type design? (clowept)
Que:- Assertcons Dual - clope ADC is the mosit prefer conversion approach in ditital mu1timetert.
Reoson: Dual slope A / D convercter prowidep high accuray in A/D converesion, which attae \& ame wionk supprechothe noiz affect anthe i"pijignal
con:- truee (.A\&s)
Trwe (ARCROC)
 ヤ

Qie: Integrationg preinciple sin the edngittiel measurement is the conversion ofy....
(a) voltage to time.
(b) Voitage, to freservency, (pual slope type.)
(c) cov voltage to curerent.
(d) curecent to voltage.
(Vref)
Que: The
oerference vol中age and $i / 1 /$

$$
\begin{aligned}
& \begin{array}{c}
\text { velsage are sequenteically conne- } \\
\text { to to the ontegratore with }
\end{array} \\
& \text { the help of Jswitch in a -. }
\end{aligned}
$$

rgsir 1) val stope itype $A D C$.
Que= An integrating DrM meosurek Coin:- Averege value. $\mathrm{C}=\mathrm{BCZ}$. of (n+egeation).
ave:- A frequency contere with a gating
are counts too time of 50 ms , count: 501254^{\prime} cycles of an c / p \&quare wave. Tien the freequency of the ci/s urive
Qf Ele Etroncic counter ïs a meosurpig
 eether foreguency (or) plime related parameters.
standard contres. standard contror

$$
n=1254
$$

$f_{x}=$?

from an anknoun pource.e.

$$
\begin{aligned}
& n=f \cdot T \text { where } T=\text { tate ofon time. } \\
& \begin{array}{l}
n=\text { Accumulated } \\
f=\text { inknoun (event } \\
\text { nuft }
\end{array} \text { fresurny. }
\end{aligned}
$$

$$
\begin{aligned}
\therefore f=\frac{n}{T} & =\frac{1254151 / A \& s}{50 \mathrm{~ms}} \\
& \Rightarrow f=25.08 \mathrm{kHzz}
\end{aligned}
$$

NOTE: $=2$ nasic meapurcementy using Eleotonns.

$$
\begin{aligned}
& \text { counter (ore) frequenoy }
\end{aligned}
$$

