UTKAL GOURAV MADHUSUDAN INSTITUTE OF TECHNOLOGY, RAYAGADA Department of ELECTRICAL ENGINEERING

Academic Lesson Plan for 5TH Semester – 2023-24 (Winter)

 $\textbf{Subject:} \ \mathsf{DIGITAL} \ \mathsf{ELECTRONICS} \ \& \ \mathsf{MICROPROCESSOR} \ \mathsf{LAB} \ (\mathsf{PR}\ \mathsf{3})$

Name of the teaching faculty- Miss Sarita Bauri, PTGF(Electrical Engg.)

SEMESTER FROM No. of periods per week: 3 Sessional Exam. : 25 Marks
DATE:01/08/2023 TO NO.OF WEEKS:15 End Semester Exam.: 50 Marks

DATE:30/11/2023 Total periods: 45 Total Marks: 75 Marks

WEEK	CLASS DAY	UNIT	THEORY/PRACTICAL TOPICS	REMARK
1ST	1ST	EXPERIMENT 1	Verify truth tables of AND, OR, NOT, NOR, NAND, XOR, XNOR gates.	
	2ND			
	3RD			
2ND	1ST	EXPERIMENT 2	Implement various gates by using universal properties of NAND & NOR gates and verify	
	2ND			
	3RD		truth table.	
3RD	1ST	EXPERIMENT 3	Implement half adder and Full adder using logic gates.	
	2ND			
	3RD			
4TH	1ST	EXPERIMENT 4	Implement half substractor and Full substractor using logic gates.	
	2ND			
	3RD			
5TH	1ST	EXPERIMENT 5	Implement a 4-bit Binary to Gray code converter.	
	2ND			
	3RD			
6TH	1ST	EXPERIMENT 6	Implement a Single bit digital comparator.	
	2ND			
	3RD			
7TH	1ST	EXPERIMENT 7	Study Multiplexer and demultiplexer.	
	2ND			
	3RD			
8TH	1ST	EXPERIMENT 8	Study of flip-flops. i) S-R flip flop ii) J-K flip flop iii) flip flop iv) T flip flop	
	2ND			
	3RD			
9TH	1ST	EXPERIMENT 9	Realize a 4-bit asynchronous UP/Down counter with a control for up/down counting.	
	2ND			
	3RD			
10 [™]	1ST	EXPERIMENT 10	Realize a 4-bit synchronous UP/Down counter with a control for up/down counting.	
	2ND			
	3RD			
11TH	1ST	EXPERIMENT 11	Implement Mode-10 asynchronous counters.	
	2ND			
	3RD			
12TH	1ST	EXPERIMENT 12	Study shift registers.	
	2ND			
	3RD			
13TH	1ST	GENERAL	1'S Complement. b. 2'S Complement. 2. a.	

	2ND	PROGRAMMING	Addition of 8-bit number. b. Subtraction of 8-bit	
	3RD	USING 8085A	number resulting 8/16 bit number.	
		DEVELOPMENT		
		BOARD		
14TH	1ST	GENERAL	Decimal Addition 8-bit number. b. Decimal	
	2ND	PROGRAMMING	Subtraction 8-bit number 3. a. Compare	
	3RD	USING 8085A	between two numbers. b. Find the largest in an	
		DEVELOPMENT	Array	
		BOARD		
15TH	1ST	GENERAL	Block Transfer.	
	2ND	PROGRAMMING		
	3RD	USING 8085A		
		DEVELOPMENT		
		BOARD		